asm3515's picture
asm3515/Robert-yelp-rating-lora
0b6a553 verified
metadata
library_name: peft
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results_lora
    results: []

results_lora

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2809
  • Accuracy: 0.8922
  • F1: 0.8965
  • Precision: 0.8772
  • Recall: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2818 1.0 4210 0.2717 0.8888 0.8904 0.8934 0.8874
0.2723 2.0 8420 0.2880 0.8888 0.8945 0.8653 0.9257
0.2321 3.0 12630 0.2809 0.8922 0.8965 0.8772 0.9167

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1