acge model
acge模型来自于合合信息技术团队,对外技术试用平台TextIn, github开源链接为github。合合信息是行业领先的人工智能及大数据科技企业,致力于通过智能文字识别及商业大数据领域的核心技术、C端和B端产品以及行业解决方案为全球企业和个人用户提供创新的数字化、智能化服务。
技术交流请联系[email protected],商务合作请联系[email protected],可以点击图片,扫面二维码来加入我们的微信社群。想加入合合信息,做“文档解析”、“文档检索”、“文档预研”的同学可以投简历给[email protected],也可直接添加HR微信详聊岗位内容。
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了Matryoshka Representation Learning,如图所示:
建议使用的维度为1024或者1792
Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
---|---|---|---|---|---|
acge-text-embedding | 0.65 | [1024, 1792] | 1024 | Chinese | NO |
Metric
C-MTEB leaderboard (Chinese)
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。 根据infgrad的建议,选取不用的输入的长度作为测试,Sequence Length为512时测试最佳。
Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 768 | 68.95 | 72.76 | 58.68 | 87.84 | 67.86 | 72.48 | 62.07 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 512 | 69.07 | 72.75 | 58.7 | 87.84 | 67.99 | 72.93 | 62.09 |
Reproduce our results
C-MTEB:
import torch
import argparse
import functools
from C_MTEB.tasks import *
from typing import List, Dict
from sentence_transformers import SentenceTransformer
from mteb import MTEB, DRESModel
class RetrievalModel(DRESModel):
def __init__(self, encoder, **kwargs):
self.encoder = encoder
def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
input_texts = ['{}'.format(q) for q in queries]
return self._do_encode(input_texts)
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray:
input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus]
input_texts = ['{}'.format(t) for t in input_texts]
return self._do_encode(input_texts)
@torch.no_grad()
def _do_encode(self, input_texts: List[str]) -> np.ndarray:
return self.encoder.encode(
sentences=input_texts,
batch_size=512,
normalize_embeddings=True,
convert_to_numpy=True
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', default="acge_text_embedding", type=str)
parser.add_argument('--task_type', default=None, type=str)
parser.add_argument('--pooling_method', default='cls', type=str)
parser.add_argument('--output_dir', default='zh_results',
type=str, help='output directory')
parser.add_argument('--max_len', default=1024, type=int, help='max length')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
encoder = SentenceTransformer(args.model_name_or_path).half()
encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True)
encoder.max_seq_length = int(args.max_len)
task_names = [t.description["name"] for t in MTEB(task_types=args.task_type,
task_langs=['zh', 'zh-CN']).tasks]
TASKS_WITH_PROMPTS = ["T2Retrieval", "MMarcoRetrieval", "DuRetrieval", "CovidRetrieval", "CmedqaRetrieval",
"EcomRetrieval", "MedicalRetrieval", "VideoRetrieval"]
for task in task_names:
evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN'])
if task in TASKS_WITH_PROMPTS:
evaluation.run(RetrievalModel(encoder), output_folder=args.output_dir, overwrite_results=False)
else:
evaluation.run(encoder, output_folder=args.output_dir, overwrite_results=False)
Usage
acge 中文系列模型
在sentence-transformer库中的使用方法:
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('acge_text_embedding')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
在sentence-transformer库中的使用方法,选取不同的维度:
from sklearn.preprocessing import normalize
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('acge_text_embedding')
embeddings = model.encode(sentences, normalize_embeddings=False)
matryoshka_dim = 1024
embeddings = embeddings[..., :matryoshka_dim] # Shrink the embedding dimensions
embeddings = normalize(embeddings, norm="l2", axis=1)
print(embeddings.shape)
# => (2, 1024)
- Downloads last month
- 11,558
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for aspire/acge_text_embedding
Spaces using aspire/acge_text_embedding 4
Evaluation results
- cos_sim_pearson on MTEB AFQMCvalidation set self-reported54.034
- cos_sim_spearman on MTEB AFQMCvalidation set self-reported58.807
- euclidean_pearson on MTEB AFQMCvalidation set self-reported57.472
- euclidean_spearman on MTEB AFQMCvalidation set self-reported58.808
- manhattan_pearson on MTEB AFQMCvalidation set self-reported57.463
- manhattan_spearman on MTEB AFQMCvalidation set self-reported58.802
- cos_sim_pearson on MTEB ATECtest set self-reported53.526
- cos_sim_spearman on MTEB ATECtest set self-reported57.945
- euclidean_pearson on MTEB ATECtest set self-reported61.170
- euclidean_spearman on MTEB ATECtest set self-reported57.946