dmusingu's picture
asr-africa/MMS-Wolof-20-hour-Mixed-dataset
01089d5 verified
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: MMS-Wolof-20-hour-Mixed-dataset
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: wo_sn
split: None
args: wo_sn
metrics:
- name: Wer
type: wer
value: 0.4748502317169662
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/j93wiewo)
# MMS-Wolof-20-hour-Mixed-dataset
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3654
- Wer: 0.4749
- Cer: 0.1708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 9.5604 | 0.7369 | 500 | 0.7373 | 0.5227 | 0.1732 |
| 2.6975 | 1.4738 | 1000 | 0.6973 | 0.5301 | 0.1779 |
| 2.726 | 2.2108 | 1500 | 0.8814 | 0.5966 | 0.2092 |
| 2.8093 | 2.9477 | 2000 | 0.8858 | 0.6151 | 0.2303 |
| 2.78 | 3.6846 | 2500 | 0.8017 | 0.5918 | 0.2146 |
| 2.8066 | 4.4215 | 3000 | 1.0143 | 0.6655 | 0.2453 |
| 2.8916 | 5.1584 | 3500 | 0.8609 | 0.6299 | 0.2351 |
| 2.7853 | 5.8954 | 4000 | 0.8444 | 0.6100 | 0.2304 |
| 2.6374 | 6.6323 | 4500 | 0.9584 | 0.6420 | 0.2505 |
| 2.5197 | 7.3692 | 5000 | 0.9859 | 0.6703 | 0.2562 |
| 2.4943 | 8.1061 | 5500 | 0.8587 | 0.6267 | 0.2405 |
| 2.39 | 8.8430 | 6000 | 0.9456 | 0.6221 | 0.2388 |
| 2.2478 | 9.5800 | 6500 | 0.9030 | 0.6598 | 0.2536 |
| 2.1688 | 10.3169 | 7000 | 0.8462 | 0.6527 | 0.2567 |
| 2.0468 | 11.0538 | 7500 | 0.8851 | 0.6080 | 0.2302 |
| 1.9318 | 11.7907 | 8000 | 0.8898 | 0.6276 | 0.2301 |
| 1.8937 | 12.5276 | 8500 | 0.7846 | 0.5826 | 0.2191 |
| 1.7943 | 13.2646 | 9000 | 0.8560 | 0.6137 | 0.2326 |
| 1.7337 | 14.0015 | 9500 | 0.8789 | 0.6005 | 0.2271 |
| 1.608 | 14.7384 | 10000 | 0.8736 | 0.6092 | 0.2270 |
| 1.5533 | 15.4753 | 10500 | 0.9045 | 0.5951 | 0.2287 |
| 1.4501 | 16.2122 | 11000 | 0.8505 | 0.6288 | 0.2415 |
| 1.4074 | 16.9492 | 11500 | 0.8023 | 0.5853 | 0.2227 |
| 1.3339 | 17.6861 | 12000 | 0.8177 | 0.5967 | 0.2211 |
| 1.2208 | 18.4230 | 12500 | 0.8922 | 0.5761 | 0.2126 |
| 1.1803 | 19.1599 | 13000 | 0.8207 | 0.5637 | 0.2076 |
| 1.1159 | 19.8968 | 13500 | 0.8114 | 0.5473 | 0.2013 |
| 1.0415 | 20.6338 | 14000 | 0.8646 | 0.5533 | 0.2036 |
| 0.9767 | 21.3707 | 14500 | 0.9001 | 0.5569 | 0.2088 |
| 0.9803 | 22.1076 | 15000 | 0.8485 | 0.5696 | 0.2100 |
| 0.8933 | 22.8445 | 15500 | 0.8164 | 0.5452 | 0.2041 |
| 0.8509 | 23.5814 | 16000 | 0.9136 | 0.5545 | 0.2037 |
| 0.8398 | 24.3183 | 16500 | 0.8095 | 0.5350 | 0.1950 |
| 0.7741 | 25.0553 | 17000 | 0.9116 | 0.5448 | 0.1998 |
| 0.7303 | 25.7922 | 17500 | 0.9380 | 0.5339 | 0.1948 |
| 0.7132 | 26.5291 | 18000 | 0.8357 | 0.5143 | 0.1888 |
| 0.6655 | 27.2660 | 18500 | 0.9127 | 0.5495 | 0.2049 |
| 0.6452 | 28.0029 | 19000 | 0.8722 | 0.5258 | 0.1933 |
| 0.5913 | 28.7399 | 19500 | 0.9262 | 0.5227 | 0.1929 |
| 0.5792 | 29.4768 | 20000 | 0.9722 | 0.5239 | 0.1883 |
| 0.5528 | 30.2137 | 20500 | 0.9868 | 0.5259 | 0.1937 |
| 0.5488 | 30.9506 | 21000 | 0.9860 | 0.5268 | 0.1945 |
| 0.5023 | 31.6875 | 21500 | 0.9549 | 0.5134 | 0.1874 |
| 0.4668 | 32.4245 | 22000 | 1.0188 | 0.5200 | 0.1943 |
| 0.4751 | 33.1614 | 22500 | 1.0139 | 0.5112 | 0.1852 |
| 0.434 | 33.8983 | 23000 | 1.0354 | 0.5073 | 0.1815 |
| 0.4149 | 34.6352 | 23500 | 0.9920 | 0.5170 | 0.1874 |
| 0.4044 | 35.3721 | 24000 | 1.1387 | 0.5051 | 0.1840 |
| 0.3839 | 36.1091 | 24500 | 1.1052 | 0.5034 | 0.1848 |
| 0.3576 | 36.8460 | 25000 | 1.0593 | 0.4889 | 0.1811 |
| 0.3379 | 37.5829 | 25500 | 1.0930 | 0.5007 | 0.1823 |
| 0.336 | 38.3198 | 26000 | 1.1091 | 0.4968 | 0.1808 |
| 0.3148 | 39.0567 | 26500 | 1.1871 | 0.4993 | 0.1810 |
| 0.3005 | 39.7937 | 27000 | 1.1890 | 0.4993 | 0.1801 |
| 0.2964 | 40.5306 | 27500 | 1.1436 | 0.4899 | 0.1758 |
| 0.2731 | 41.2675 | 28000 | 1.1677 | 0.4940 | 0.1780 |
| 0.2641 | 42.0044 | 28500 | 1.1943 | 0.4943 | 0.1783 |
| 0.2435 | 42.7413 | 29000 | 1.2838 | 0.4906 | 0.1787 |
| 0.2486 | 43.4783 | 29500 | 1.2935 | 0.4938 | 0.1767 |
| 0.2259 | 44.2152 | 30000 | 1.3013 | 0.4898 | 0.1749 |
| 0.218 | 44.9521 | 30500 | 1.2965 | 0.4856 | 0.1749 |
| 0.2143 | 45.6890 | 31000 | 1.2891 | 0.4823 | 0.1739 |
| 0.195 | 46.4259 | 31500 | 1.3284 | 0.4791 | 0.1724 |
| 0.1943 | 47.1629 | 32000 | 1.3182 | 0.4805 | 0.1734 |
| 0.1851 | 47.8998 | 32500 | 1.3429 | 0.4769 | 0.1719 |
| 0.1833 | 48.6367 | 33000 | 1.3515 | 0.4723 | 0.1708 |
| 0.1739 | 49.3736 | 33500 | 1.3654 | 0.4749 | 0.1708 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3