|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: W2V2_Bert_Afrivoice_FLEURS_Shona_100hr_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# W2V2_Bert_Afrivoice_FLEURS_Shona_100hr_v1 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2169 |
|
- Model Preparation Time: 0.0117 |
|
- Wer: 0.2047 |
|
- Cer: 0.0377 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.025 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:------:|:------:| |
|
| 0.0958 | 1.0 | 4449 | 0.1764 | 0.0117 | 0.2148 | 0.0352 | |
|
| 0.093 | 2.0 | 8898 | 0.1879 | 0.0117 | 0.2282 | 0.0382 | |
|
| 0.0993 | 3.0 | 13347 | 0.1860 | 0.0117 | 0.2285 | 0.0384 | |
|
| 0.0971 | 4.0 | 17796 | 0.1906 | 0.0117 | 0.2379 | 0.0390 | |
|
| 0.0912 | 5.0 | 22245 | 0.1843 | 0.0117 | 0.2268 | 0.0381 | |
|
| 0.084 | 6.0 | 26694 | 0.1970 | 0.0117 | 0.2247 | 0.0376 | |
|
| 0.0786 | 7.0 | 31143 | 0.2031 | 0.0117 | 0.2433 | 0.0419 | |
|
| 0.0716 | 8.0 | 35592 | 0.2114 | 0.0117 | 0.2360 | 0.0394 | |
|
| 0.0673 | 9.0 | 40041 | 0.2146 | 0.0117 | 0.2358 | 0.0388 | |
|
| 0.0617 | 10.0 | 44490 | 0.2282 | 0.0117 | 0.2311 | 0.0384 | |
|
| 0.0559 | 11.0 | 48939 | 0.2302 | 0.0117 | 0.2306 | 0.0386 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|