metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: W2V2_Bert_BIG_C_Bemba_100hr_v1
results: []
W2V2_Bert_BIG_C_Bemba_100hr_v1
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4908
- Wer: 0.3467
- Cer: 0.0931
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.5063 | 1.0 | 12851 | 0.6450 | 0.4944 | 0.1202 |
0.6656 | 2.0 | 25702 | 0.5112 | 0.4189 | 0.1037 |
0.6012 | 3.0 | 38553 | 0.4759 | 0.3943 | 0.0999 |
0.5586 | 4.0 | 51404 | 0.4518 | 0.3684 | 0.0930 |
0.5269 | 5.0 | 64255 | 0.4608 | 0.3510 | 0.0912 |
0.5006 | 6.0 | 77106 | 0.4594 | 0.3449 | 0.0885 |
0.4764 | 7.0 | 89957 | 0.4323 | 0.3358 | 0.0872 |
0.452 | 8.0 | 102808 | 0.4257 | 0.3465 | 0.0903 |
0.4295 | 9.0 | 115659 | 0.4303 | 0.3328 | 0.0858 |
0.4064 | 10.0 | 128510 | 0.4404 | 0.3272 | 0.0854 |
0.3823 | 11.0 | 141361 | 0.4655 | 0.3291 | 0.0855 |
0.3591 | 12.0 | 154212 | 0.4748 | 0.3312 | 0.0859 |
0.3352 | 13.0 | 167063 | 0.4645 | 0.3405 | 0.0919 |
0.3127 | 14.0 | 179914 | 0.5077 | 0.3317 | 0.0860 |
0.2897 | 15.0 | 192765 | 0.4963 | 0.3370 | 0.0879 |
0.2686 | 16.0 | 205616 | 0.5166 | 0.3373 | 0.0882 |
0.2482 | 17.0 | 218467 | 0.5365 | 0.3382 | 0.0883 |
0.2289 | 18.0 | 231318 | 0.5852 | 0.3401 | 0.0883 |
0.2101 | 19.0 | 244169 | 0.6336 | 0.3415 | 0.0889 |
0.193 | 20.0 | 257020 | 0.6719 | 0.3402 | 0.0884 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.0
- Tokenizers 0.19.1