metadata
library_name: transformers
language:
- bem
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- BIG_C/BEMBA
metrics:
- wer
model-index:
- name: facebook/w2v-bert-2.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: BIG_C
type: BIG_C/BEMBA
metrics:
- name: Wer
type: wer
value: 0.4003345055322069
facebook/w2v-bert-2.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the BIG_C dataset. It achieves the following results on the evaluation set:
- Loss: 0.4054
- Wer: 0.4003
- Cer: 0.0766
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.0933 | 1.0 | 41178 | 0.5653 | 0.4240 | 0.1120 |
0.5359 | 2.0 | 82356 | 0.5139 | 0.3772 | 0.1026 |
0.4943 | 3.0 | 123534 | 0.4832 | 0.3560 | 0.0996 |
0.4599 | 4.0 | 164712 | 0.4774 | 0.3378 | 0.0948 |
0.4331 | 5.0 | 205890 | 0.4882 | 0.3305 | 0.0931 |
0.4092 | 6.0 | 247068 | 0.4580 | 0.3281 | 0.0921 |
0.3826 | 7.0 | 288246 | 0.4873 | 0.3232 | 0.0903 |
0.3536 | 8.0 | 329424 | 0.5067 | 0.3227 | 0.0908 |
0.3231 | 9.0 | 370602 | 0.5101 | 0.3274 | 0.0938 |
0.2924 | 10.0 | 411780 | 0.5481 | 0.3290 | 0.0927 |
0.263 | 11.0 | 452958 | 0.5684 | 0.3320 | 0.0927 |
0.2364 | 12.0 | 494136 | 0.5973 | 0.3362 | 0.0935 |
0.2135 | 13.0 | 535314 | 0.6344 | 0.3405 | 0.0951 |
0.1941 | 14.0 | 576492 | 0.7075 | 0.3370 | 0.0939 |
0.1765 | 15.0 | 617670 | 0.7800 | 0.3398 | 0.0947 |
0.1615 | 16.0 | 658848 | 0.8164 | 0.3389 | 0.0941 |
0.1482 | 17.0 | 700026 | 0.8562 | 0.3410 | 0.0949 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.2.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1