Beijuka's picture
End of training
1b65969 verified
metadata
library_name: transformers
language:
  - bem
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - BIG_C/BEMBA
metrics:
  - wer
model-index:
  - name: facebook/w2v-bert-2.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BIG_C
          type: BIG_C/BEMBA
        metrics:
          - name: Wer
            type: wer
            value: 0.4003345055322069

facebook/w2v-bert-2.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4054
  • Wer: 0.4003
  • Cer: 0.0766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.025
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0933 1.0 41178 0.5653 0.4240 0.1120
0.5359 2.0 82356 0.5139 0.3772 0.1026
0.4943 3.0 123534 0.4832 0.3560 0.0996
0.4599 4.0 164712 0.4774 0.3378 0.0948
0.4331 5.0 205890 0.4882 0.3305 0.0931
0.4092 6.0 247068 0.4580 0.3281 0.0921
0.3826 7.0 288246 0.4873 0.3232 0.0903
0.3536 8.0 329424 0.5067 0.3227 0.0908
0.3231 9.0 370602 0.5101 0.3274 0.0938
0.2924 10.0 411780 0.5481 0.3290 0.0927
0.263 11.0 452958 0.5684 0.3320 0.0927
0.2364 12.0 494136 0.5973 0.3362 0.0935
0.2135 13.0 535314 0.6344 0.3405 0.0951
0.1941 14.0 576492 0.7075 0.3370 0.0939
0.1765 15.0 617670 0.7800 0.3398 0.0947
0.1615 16.0 658848 0.8164 0.3389 0.0941
0.1482 17.0 700026 0.8562 0.3410 0.0949

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1