You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4631
  • Model Preparation Time: 0.0111
  • Wer: 0.5000
  • Cer: 0.0994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
15.2119 0.9756 15 14.3754 0.0111 1.0 2.8114
13.7154 1.9756 30 11.9551 0.0111 1.0 1.3068
10.7174 2.9756 45 8.7638 0.0111 1.0 0.8494
8.1163 3.9756 60 7.4602 0.0111 1.0 0.9419
7.3697 4.9756 75 7.0681 0.0111 1.0 0.9794
6.7473 5.9756 90 6.4844 0.0111 1.0 0.9688
4.9931 6.9756 105 3.0213 0.0111 0.9998 0.9275
2.4759 7.9756 120 1.4651 0.0111 0.9627 0.3229
1.1333 8.9756 135 0.8066 0.0111 0.6741 0.1628
0.857 9.9756 150 0.7021 0.0111 0.6387 0.1507
0.7852 10.9756 165 0.6550 0.0111 0.6045 0.1409
0.7432 11.9756 180 0.6396 0.0111 0.5860 0.1358
0.7508 12.9756 195 0.6367 0.0111 0.5822 0.1336
0.7122 13.9756 210 0.6270 0.0111 0.5778 0.1333
0.7009 14.9756 225 0.6258 0.0111 0.5638 0.1301
0.699 15.9756 240 0.6172 0.0111 0.5699 0.1318
0.688 16.9756 255 0.6161 0.0111 0.5710 0.1315
0.6861 17.9756 270 0.6167 0.0111 0.5727 0.1319
0.675 18.9756 285 0.6138 0.0111 0.5631 0.1290
0.6587 19.9756 300 0.6150 0.0111 0.5619 0.1295
0.6416 20.9756 315 0.6127 0.0111 0.5574 0.1289
0.6236 21.9756 330 0.6158 0.0111 0.5612 0.1296
0.6339 22.9756 345 0.6235 0.0111 0.5621 0.1316
0.6192 23.9756 360 0.6208 0.0111 0.5574 0.1305
0.5872 24.9756 375 0.6286 0.0111 0.5604 0.1316
0.5714 25.9756 390 0.6294 0.0111 0.5797 0.1374
0.5822 26.9756 405 0.6306 0.0111 0.5786 0.1368
0.5654 27.9756 420 0.6298 0.0111 0.5565 0.1296
0.559 28.9756 435 0.6280 0.0111 0.5597 0.1299
0.5443 29.9756 450 0.6313 0.0111 0.5576 0.1296
0.5395 30.9756 465 0.6402 0.0111 0.5523 0.1277
0.5422 31.9756 480 0.6380 0.0111 0.5445 0.1270
0.5318 32.9756 495 0.6383 0.0111 0.5440 0.1262
0.5233 33.9756 510 0.6411 0.0111 0.5411 0.1266
0.5202 34.9756 525 0.6405 0.0111 0.5432 0.1271
0.5093 35.9756 540 0.6513 0.0111 0.5468 0.1271
0.501 36.9756 555 0.6505 0.0111 0.5461 0.1277
0.5009 37.9756 570 0.6491 0.0111 0.5472 0.1277
0.4849 38.9756 585 0.6738 0.0111 0.5334 0.1239
0.4823 39.9756 600 0.6644 0.0111 0.5387 0.1260
0.4826 40.9756 615 0.6685 0.0111 0.5364 0.1257
0.484 41.9756 630 0.6725 0.0111 0.5360 0.1249
0.4787 42.9756 645 0.6603 0.0111 0.5417 0.1259
0.4711 43.9756 660 0.6696 0.0111 0.5638 0.1327
0.4722 44.9756 675 0.6652 0.0111 0.5385 0.1248
0.4496 45.9756 690 0.6620 0.0111 0.5404 0.1266
0.4453 46.9756 705 0.6950 0.0111 0.5321 0.1248
0.4495 47.9756 720 0.7069 0.0111 0.5290 0.1235
0.4436 48.9756 735 0.6966 0.0111 0.5328 0.1244
0.438 49.9756 750 0.6767 0.0111 0.5351 0.1277
0.4334 50.9756 765 0.6908 0.0111 0.5451 0.1282
0.4227 51.9756 780 0.7179 0.0111 0.5383 0.1260
0.4226 52.9756 795 0.7106 0.0111 0.5377 0.1254
0.4182 53.9756 810 0.7017 0.0111 0.5495 0.1306
0.4153 54.9756 825 0.6970 0.0111 0.5413 0.1295
0.4071 55.9756 840 0.7151 0.0111 0.5394 0.1269
0.4065 56.9756 855 0.7126 0.0111 0.5394 0.1264
0.4015 57.9756 870 0.7199 0.0111 0.5445 0.1279

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/mms-1B_all_BIG_C_Bemba_1hr_v1

Finetuned
(214)
this model

Collection including asr-africa/mms-1B_all_BIG_C_Bemba_1hr_v1

Evaluation results