Bemba
Collection
Experimental automatic speech recognition models developed for the Bemba language
•
32 items
•
Updated
This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
15.2119 | 0.9756 | 15 | 14.3754 | 0.0111 | 1.0 | 2.8114 |
13.7154 | 1.9756 | 30 | 11.9551 | 0.0111 | 1.0 | 1.3068 |
10.7174 | 2.9756 | 45 | 8.7638 | 0.0111 | 1.0 | 0.8494 |
8.1163 | 3.9756 | 60 | 7.4602 | 0.0111 | 1.0 | 0.9419 |
7.3697 | 4.9756 | 75 | 7.0681 | 0.0111 | 1.0 | 0.9794 |
6.7473 | 5.9756 | 90 | 6.4844 | 0.0111 | 1.0 | 0.9688 |
4.9931 | 6.9756 | 105 | 3.0213 | 0.0111 | 0.9998 | 0.9275 |
2.4759 | 7.9756 | 120 | 1.4651 | 0.0111 | 0.9627 | 0.3229 |
1.1333 | 8.9756 | 135 | 0.8066 | 0.0111 | 0.6741 | 0.1628 |
0.857 | 9.9756 | 150 | 0.7021 | 0.0111 | 0.6387 | 0.1507 |
0.7852 | 10.9756 | 165 | 0.6550 | 0.0111 | 0.6045 | 0.1409 |
0.7432 | 11.9756 | 180 | 0.6396 | 0.0111 | 0.5860 | 0.1358 |
0.7508 | 12.9756 | 195 | 0.6367 | 0.0111 | 0.5822 | 0.1336 |
0.7122 | 13.9756 | 210 | 0.6270 | 0.0111 | 0.5778 | 0.1333 |
0.7009 | 14.9756 | 225 | 0.6258 | 0.0111 | 0.5638 | 0.1301 |
0.699 | 15.9756 | 240 | 0.6172 | 0.0111 | 0.5699 | 0.1318 |
0.688 | 16.9756 | 255 | 0.6161 | 0.0111 | 0.5710 | 0.1315 |
0.6861 | 17.9756 | 270 | 0.6167 | 0.0111 | 0.5727 | 0.1319 |
0.675 | 18.9756 | 285 | 0.6138 | 0.0111 | 0.5631 | 0.1290 |
0.6587 | 19.9756 | 300 | 0.6150 | 0.0111 | 0.5619 | 0.1295 |
0.6416 | 20.9756 | 315 | 0.6127 | 0.0111 | 0.5574 | 0.1289 |
0.6236 | 21.9756 | 330 | 0.6158 | 0.0111 | 0.5612 | 0.1296 |
0.6339 | 22.9756 | 345 | 0.6235 | 0.0111 | 0.5621 | 0.1316 |
0.6192 | 23.9756 | 360 | 0.6208 | 0.0111 | 0.5574 | 0.1305 |
0.5872 | 24.9756 | 375 | 0.6286 | 0.0111 | 0.5604 | 0.1316 |
0.5714 | 25.9756 | 390 | 0.6294 | 0.0111 | 0.5797 | 0.1374 |
0.5822 | 26.9756 | 405 | 0.6306 | 0.0111 | 0.5786 | 0.1368 |
0.5654 | 27.9756 | 420 | 0.6298 | 0.0111 | 0.5565 | 0.1296 |
0.559 | 28.9756 | 435 | 0.6280 | 0.0111 | 0.5597 | 0.1299 |
0.5443 | 29.9756 | 450 | 0.6313 | 0.0111 | 0.5576 | 0.1296 |
0.5395 | 30.9756 | 465 | 0.6402 | 0.0111 | 0.5523 | 0.1277 |
0.5422 | 31.9756 | 480 | 0.6380 | 0.0111 | 0.5445 | 0.1270 |
0.5318 | 32.9756 | 495 | 0.6383 | 0.0111 | 0.5440 | 0.1262 |
0.5233 | 33.9756 | 510 | 0.6411 | 0.0111 | 0.5411 | 0.1266 |
0.5202 | 34.9756 | 525 | 0.6405 | 0.0111 | 0.5432 | 0.1271 |
0.5093 | 35.9756 | 540 | 0.6513 | 0.0111 | 0.5468 | 0.1271 |
0.501 | 36.9756 | 555 | 0.6505 | 0.0111 | 0.5461 | 0.1277 |
0.5009 | 37.9756 | 570 | 0.6491 | 0.0111 | 0.5472 | 0.1277 |
0.4849 | 38.9756 | 585 | 0.6738 | 0.0111 | 0.5334 | 0.1239 |
0.4823 | 39.9756 | 600 | 0.6644 | 0.0111 | 0.5387 | 0.1260 |
0.4826 | 40.9756 | 615 | 0.6685 | 0.0111 | 0.5364 | 0.1257 |
0.484 | 41.9756 | 630 | 0.6725 | 0.0111 | 0.5360 | 0.1249 |
0.4787 | 42.9756 | 645 | 0.6603 | 0.0111 | 0.5417 | 0.1259 |
0.4711 | 43.9756 | 660 | 0.6696 | 0.0111 | 0.5638 | 0.1327 |
0.4722 | 44.9756 | 675 | 0.6652 | 0.0111 | 0.5385 | 0.1248 |
0.4496 | 45.9756 | 690 | 0.6620 | 0.0111 | 0.5404 | 0.1266 |
0.4453 | 46.9756 | 705 | 0.6950 | 0.0111 | 0.5321 | 0.1248 |
0.4495 | 47.9756 | 720 | 0.7069 | 0.0111 | 0.5290 | 0.1235 |
0.4436 | 48.9756 | 735 | 0.6966 | 0.0111 | 0.5328 | 0.1244 |
0.438 | 49.9756 | 750 | 0.6767 | 0.0111 | 0.5351 | 0.1277 |
0.4334 | 50.9756 | 765 | 0.6908 | 0.0111 | 0.5451 | 0.1282 |
0.4227 | 51.9756 | 780 | 0.7179 | 0.0111 | 0.5383 | 0.1260 |
0.4226 | 52.9756 | 795 | 0.7106 | 0.0111 | 0.5377 | 0.1254 |
0.4182 | 53.9756 | 810 | 0.7017 | 0.0111 | 0.5495 | 0.1306 |
0.4153 | 54.9756 | 825 | 0.6970 | 0.0111 | 0.5413 | 0.1295 |
0.4071 | 55.9756 | 840 | 0.7151 | 0.0111 | 0.5394 | 0.1269 |
0.4065 | 56.9756 | 855 | 0.7126 | 0.0111 | 0.5394 | 0.1264 |
0.4015 | 57.9756 | 870 | 0.7199 | 0.0111 | 0.5445 | 0.1279 |
Base model
facebook/mms-1b-all