You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3664
  • Model Preparation Time: 0.0118
  • Wer: 0.4282
  • Cer: 0.0810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
1.1174 1.0 1544 0.6021 0.0118 0.5160 0.1324
0.6138 2.0 3088 0.5427 0.0118 0.4778 0.1229
0.5739 3.0 4632 0.5287 0.0118 0.4618 0.1194
0.5536 4.0 6176 0.5322 0.0118 0.4502 0.1169
0.5399 5.0 7720 0.5151 0.0118 0.4503 0.1168
0.5291 6.0 9264 0.5201 0.0118 0.4560 0.1224
0.52 7.0 10808 0.5058 0.0118 0.4622 0.1198
0.5133 8.0 12352 0.5017 0.0118 0.4466 0.1175
0.5054 9.0 13896 0.4975 0.0118 0.4438 0.1134
0.4994 10.0 15440 0.4987 0.0118 0.4373 0.1138
0.4933 11.0 16984 0.4932 0.0118 0.4211 0.1098
0.4868 12.0 18528 0.4977 0.0118 0.4460 0.1193
0.4827 13.0 20072 0.4907 0.0118 0.4229 0.1110
0.4767 14.0 21616 0.4876 0.0118 0.4169 0.1088
0.4712 15.0 23160 0.4875 0.0118 0.4306 0.1149
0.4714 16.0 24704 0.4862 0.0118 0.4191 0.1084
0.4631 17.0 26248 0.4873 0.0118 0.4171 0.1114
0.4578 18.0 27792 0.4848 0.0118 0.4153 0.1114
0.4535 19.0 29336 0.4789 0.0118 0.4105 0.1094
0.4491 20.0 30880 0.4874 0.0118 0.4301 0.1145
0.4453 21.0 32424 0.4847 0.0118 0.4174 0.1092
0.4395 22.0 33968 0.4861 0.0118 0.4080 0.1061
0.4345 23.0 35512 0.4903 0.0118 0.4021 0.1055
0.4307 24.0 37056 0.4919 0.0118 0.4115 0.1097
0.4261 25.0 38600 0.4820 0.0118 0.4036 0.1082
0.4218 26.0 40144 0.4921 0.0118 0.4101 0.1107
0.4198 27.0 41688 0.4892 0.0118 0.4068 0.1097
0.4149 28.0 43232 0.4898 0.0118 0.4070 0.1090
0.4097 29.0 44776 0.4870 0.0118 0.3914 0.1039
0.4061 30.0 46320 0.4886 0.0118 0.4029 0.1105
0.4027 31.0 47864 0.4872 0.0118 0.4058 0.1071
0.4002 32.0 49408 0.5048 0.0118 0.4004 0.1045
0.3957 33.0 50952 0.4955 0.0118 0.3950 0.1040
0.3935 34.0 52496 0.4999 0.0118 0.4083 0.1127
0.3906 35.0 54040 0.4966 0.0118 0.4075 0.1082
0.3867 36.0 55584 0.4977 0.0118 0.4169 0.1173
0.3837 37.0 57128 0.4920 0.0118 0.3964 0.1042
0.3795 38.0 58672 0.4911 0.0118 0.3938 0.1060
0.3769 39.0 60216 0.5098 0.0118 0.3870 0.1023
0.3745 40.0 61760 0.5026 0.0118 0.3926 0.1053
0.3719 41.0 63304 0.4950 0.0118 0.3979 0.1064
0.3685 42.0 64848 0.5065 0.0118 0.3902 0.1036
0.3654 43.0 66392 0.4997 0.0118 0.3933 0.1075
0.3624 44.0 67936 0.5080 0.0118 0.3856 0.1021
0.3612 45.0 69480 0.4999 0.0118 0.3920 0.1057
0.3583 46.0 71024 0.5161 0.0118 0.3823 0.1019
0.3548 47.0 72568 0.5025 0.0118 0.3877 0.1036
0.3528 48.0 74112 0.5079 0.0118 0.3928 0.1052
0.3489 49.0 75656 0.5063 0.0118 0.3956 0.1048
0.3475 50.0 77200 0.5052 0.0118 0.3862 0.1032
0.3454 51.0 78744 0.5066 0.0118 0.3847 0.1024
0.3441 52.0 80288 0.5166 0.0118 0.3848 0.1028
0.3412 53.0 81832 0.5055 0.0118 0.3895 0.1041
0.3399 54.0 83376 0.5160 0.0118 0.3871 0.1030
0.3365 55.0 84920 0.5082 0.0118 0.3881 0.1042
0.3345 56.0 86464 0.5137 0.0118 0.3873 0.1044

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/mms-1B_all_BIG_C_Bemba_50hr_v1

Finetuned
(201)
this model

Evaluation results