sulaimank's picture
Update README.md
e2d0ff8 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-all-sw-CV_Fleurs_AMMI_ALFFA-1hrs-v1
    results: []

mms-1b-all-sw-CV_Fleurs_AMMI_ALFFA-1hrs-v1

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Wer: 0.2505
  • Cer: 0.0866

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Val Wer Val Cer
16.1327 1.0 37 1.1533 2.6305
14.5509 2.0 74 1.4415 1.7715
11.4505 3.0 111 1.1493 0.8650
7.3358 4.0 148 1.0074 0.8544
4.2752 5.0 185 1.0009 0.8517
3.2479 6.0 222 1.0628 0.6094
2.322 7.0 259 0.7326 0.2337
1.5058 8.0 296 0.4135 0.1305
1.0304 9.0 333 0.3108 0.1034
0.8109 10.0 370 0.2843 0.0967
0.7432 11.0 407 0.2771 0.0948
0.6892 12.0 444 0.2725 0.0935
0.6813 13.0 481 0.2694 0.0928
0.6618 14.0 518 0.2683 0.0925
0.6347 15.0 555 0.2661 0.0917
0.6194 16.0 592 0.2648 0.0913
0.6234 17.0 629 0.2643 0.0909
0.6042 18.0 666 0.2610 0.0904
0.6092 19.0 703 0.2608 0.0900
0.6032 20.0 740 0.2588 0.0896
0.5886 21.0 777 0.2578 0.0892
0.5548 22.0 814 0.2559 0.0888
0.5701 23.0 851 0.2557 0.0887
0.591 24.0 888 0.2556 0.0885
0.5481 25.0 925 0.2545 0.0882
0.5437 26.0 962 0.2541 0.0879
0.537 27.0 999 0.2531 0.0877
0.555 28.0 1036 0.2526 0.0875
0.5391 29.0 1073 0.2518 0.0873
0.531 30.0 1110 0.2523 0.0873
0.5248 31.0 1147 0.2517 0.0872
0.5125 32.0 1184 0.2514 0.0871
0.5133 33.0 1221 0.2513 0.0870
0.4936 34.0 1258 0.2519 0.0870
0.5095 35.0 1295 0.2514 0.0868
0.5121 36.0 1332 0.2509 0.0867
0.4983 37.0 1369 0.2505 0.0866

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0