metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-CV_Fleurs-lg-100hrs-v4
results: []
w2v-bert-2.0-CV_Fleurs-lg-100hrs-v4
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2835
- Wer: 0.2749
- Cer: 0.0546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.3102 | 1.0 | 7057 | 0.3038 | 0.3739 | 0.0787 |
0.1944 | 2.0 | 14114 | 0.2340 | 0.3188 | 0.0634 |
0.1558 | 3.0 | 21171 | 0.2157 | 0.3021 | 0.0598 |
0.1373 | 4.0 | 28228 | 0.2037 | 0.2926 | 0.0574 |
0.1237 | 5.0 | 35285 | 0.2079 | 0.3025 | 0.0591 |
0.1152 | 6.0 | 42342 | 0.2044 | 0.2899 | 0.0583 |
0.1091 | 7.0 | 49399 | 0.2025 | 0.3012 | 0.0567 |
0.1042 | 8.0 | 56456 | 0.2033 | 0.2728 | 0.0552 |
0.0985 | 9.0 | 63513 | 0.2035 | 0.2760 | 0.0543 |
0.0949 | 10.0 | 70570 | 0.2054 | 0.2730 | 0.0541 |
0.0885 | 11.0 | 77627 | 0.2071 | 0.2758 | 0.0557 |
0.08 | 12.0 | 84684 | 0.2039 | 0.2743 | 0.0540 |
0.0719 | 13.0 | 91741 | 0.2045 | 0.2648 | 0.0531 |
0.063 | 14.0 | 98798 | 0.2133 | 0.2682 | 0.0544 |
0.0555 | 15.0 | 105855 | 0.2107 | 0.2658 | 0.0524 |
0.0471 | 16.0 | 112912 | 0.2408 | 0.2687 | 0.0529 |
0.0399 | 17.0 | 119969 | 0.2419 | 0.2721 | 0.0535 |
0.0341 | 18.0 | 127026 | 0.2587 | 0.2833 | 0.0551 |
0.0293 | 19.0 | 134083 | 0.2518 | 0.2735 | 0.0534 |
0.0255 | 20.0 | 141140 | 0.2795 | 0.2669 | 0.0530 |
0.022 | 21.0 | 148197 | 0.2748 | 0.2820 | 0.0543 |
0.0196 | 22.0 | 155254 | 0.2837 | 0.2785 | 0.0529 |
0.017 | 23.0 | 162311 | 0.2835 | 0.2749 | 0.0546 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1