w2v-bert-2.0-CV_Fleurs-lg-10hrs-v4

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8790
  • Wer: 0.3341
  • Cer: 0.0706

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.4106 1.0 513 0.5293 0.5666 0.1264
0.4775 2.0 1026 0.4882 0.5251 0.1118
0.3696 3.0 1539 0.3973 0.4565 0.0998
0.3007 4.0 2052 0.3896 0.4311 0.0932
0.2564 5.0 2565 0.3743 0.4372 0.0966
0.2273 6.0 3078 0.3549 0.4184 0.0880
0.203 7.0 3591 0.3836 0.4001 0.0847
0.1775 8.0 4104 0.3694 0.4132 0.0855
0.159 9.0 4617 0.3487 0.4137 0.0890
0.1444 10.0 5130 0.3705 0.4277 0.0892
0.1262 11.0 5643 0.3620 0.3982 0.0828
0.1139 12.0 6156 0.3666 0.4055 0.0842
0.1015 13.0 6669 0.3656 0.4011 0.0836
0.0914 14.0 7182 0.3573 0.3928 0.0834
0.0836 15.0 7695 0.3798 0.3795 0.0790
0.0729 16.0 8208 0.4289 0.3896 0.0822
0.0652 17.0 8721 0.4778 0.4157 0.0874
0.0599 18.0 9234 0.4570 0.3796 0.0792
0.0504 19.0 9747 0.4444 0.4125 0.0856
0.0498 20.0 10260 0.4612 0.3945 0.0842
0.0434 21.0 10773 0.4881 0.4002 0.0843
0.0386 22.0 11286 0.5099 0.3777 0.0804
0.0381 23.0 11799 0.4904 0.3866 0.0824
0.0344 24.0 12312 0.4622 0.4028 0.0834
0.0302 25.0 12825 0.4986 0.3918 0.0820
0.0268 26.0 13338 0.5162 0.3954 0.0812
0.0272 27.0 13851 0.4748 0.3774 0.0791
0.0235 28.0 14364 0.4718 0.3823 0.0785
0.0219 29.0 14877 0.5318 0.3738 0.0797
0.0205 30.0 15390 0.5196 0.3769 0.0783
0.0203 31.0 15903 0.5203 0.3741 0.0788
0.019 32.0 16416 0.5031 0.3858 0.0809
0.0179 33.0 16929 0.5772 0.3745 0.0810
0.0175 34.0 17442 0.4906 0.3676 0.0763
0.0166 35.0 17955 0.5371 0.3694 0.0786
0.0138 36.0 18468 0.5748 0.3744 0.0788
0.0134 37.0 18981 0.5343 0.3697 0.0778
0.0135 38.0 19494 0.5407 0.3839 0.0804
0.0123 39.0 20007 0.5343 0.3661 0.0767
0.0124 40.0 20520 0.5633 0.3801 0.0817
0.0131 41.0 21033 0.5581 0.3633 0.0774
0.0094 42.0 21546 0.5862 0.3684 0.0789
0.0101 43.0 22059 0.5479 0.3646 0.0761
0.0094 44.0 22572 0.5738 0.3621 0.0761
0.0078 45.0 23085 0.5284 0.3782 0.0777
0.0074 46.0 23598 0.6277 0.3725 0.0790
0.01 47.0 24111 0.5826 0.3686 0.0765
0.0088 48.0 24624 0.5601 0.3660 0.0761
0.0083 49.0 25137 0.5410 0.3606 0.0769
0.0074 50.0 25650 0.5592 0.3613 0.0780
0.007 51.0 26163 0.5891 0.3690 0.0779
0.0067 52.0 26676 0.5807 0.3662 0.0779
0.0067 53.0 27189 0.5851 0.3640 0.0773
0.0065 54.0 27702 0.5989 0.3667 0.0767
0.005 55.0 28215 0.5746 0.3757 0.0785
0.0071 56.0 28728 0.5823 0.3610 0.0757
0.005 57.0 29241 0.6048 0.3562 0.0758
0.0046 58.0 29754 0.6254 0.3561 0.0753
0.0055 59.0 30267 0.6036 0.3533 0.0755
0.004 60.0 30780 0.5876 0.3605 0.0758
0.0042 61.0 31293 0.5782 0.3643 0.0776
0.0034 62.0 31806 0.6118 0.3656 0.0748
0.004 63.0 32319 0.5830 0.3650 0.0756
0.0049 64.0 32832 0.5946 0.3579 0.0755
0.0034 65.0 33345 0.5856 0.3482 0.0725
0.0023 66.0 33858 0.6186 0.3513 0.0739
0.0019 67.0 34371 0.5910 0.3664 0.0760
0.002 68.0 34884 0.6762 0.3597 0.0764
0.0027 69.0 35397 0.6270 0.3503 0.0723
0.0026 70.0 35910 0.6596 0.3551 0.0728
0.0024 71.0 36423 0.6216 0.3563 0.0744
0.0021 72.0 36936 0.6250 0.3483 0.0728
0.0018 73.0 37449 0.5963 0.3524 0.0735
0.0028 74.0 37962 0.6323 0.3541 0.0745
0.0019 75.0 38475 0.6252 0.3459 0.0735
0.0021 76.0 38988 0.6399 0.3500 0.0734
0.0013 77.0 39501 0.6548 0.3499 0.0734
0.001 78.0 40014 0.6746 0.3503 0.0743
0.0011 79.0 40527 0.6395 0.3533 0.0739
0.0007 80.0 41040 0.6779 0.3478 0.0732
0.0007 81.0 41553 0.6806 0.3463 0.0724
0.0009 82.0 42066 0.7214 0.3453 0.0726
0.0017 83.0 42579 0.6250 0.3445 0.0721
0.0009 84.0 43092 0.6632 0.3443 0.0717
0.0005 85.0 43605 0.6850 0.3397 0.0709
0.0002 86.0 44118 0.7168 0.3417 0.0717
0.0001 87.0 44631 0.7629 0.3432 0.0720
0.0002 88.0 45144 0.7349 0.3385 0.0718
0.0003 89.0 45657 0.7347 0.3377 0.0715
0.0002 90.0 46170 0.7449 0.3433 0.0720
0.0001 91.0 46683 0.7630 0.3353 0.0708
0.0 92.0 47196 0.7952 0.3339 0.0705
0.0 93.0 47709 0.8144 0.3341 0.0705
0.0 94.0 48222 0.8309 0.3346 0.0707
0.0 95.0 48735 0.8456 0.3350 0.0708
0.0 96.0 49248 0.8585 0.3346 0.0706
0.0 97.0 49761 0.8673 0.3346 0.0706
0.0 98.0 50274 0.8743 0.3343 0.0707
0.0 99.0 50787 0.8773 0.3341 0.0706
0.0 100.0 51300 0.8790 0.3341 0.0706

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs-lg-10hrs-v4

Finetuned
(238)
this model