w2v-bert-2.0-CV_Fleurs-lg-20hrs-v4

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8219
  • Wer: 0.3120
  • Cer: 0.0655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9353 1.0 1029 0.4773 0.5391 0.1166
0.3801 2.0 2058 0.3596 0.4311 0.0915
0.3008 3.0 3087 0.3586 0.4319 0.0903
0.252 4.0 4116 0.3576 0.3906 0.0854
0.2175 5.0 5145 0.3192 0.3979 0.0818
0.1932 6.0 6174 0.3230 0.3757 0.0810
0.1727 7.0 7203 0.3530 0.3784 0.0817
0.1568 8.0 8232 0.2885 0.3631 0.0749
0.1401 9.0 9261 0.3374 0.3719 0.0783
0.1237 10.0 10290 0.3464 0.3799 0.0791
0.1119 11.0 11319 0.3175 0.3537 0.0742
0.0993 12.0 12348 0.3254 0.3656 0.0768
0.0877 13.0 13377 0.3709 0.3759 0.0777
0.0791 14.0 14406 0.3799 0.3699 0.0777
0.0687 15.0 15435 0.3888 0.3568 0.0754
0.0599 16.0 16464 0.3878 0.3456 0.0749
0.0537 17.0 17493 0.3574 0.3765 0.0790
0.0476 18.0 18522 0.4234 0.3568 0.0762
0.0443 19.0 19551 0.4370 0.3587 0.0752
0.0387 20.0 20580 0.4226 0.3433 0.0723
0.0372 21.0 21609 0.4647 0.3613 0.0776
0.0327 22.0 22638 0.3934 0.3519 0.0727
0.029 23.0 23667 0.4096 0.3457 0.0732
0.0263 24.0 24696 0.4516 0.3584 0.0732
0.0264 25.0 25725 0.4486 0.3584 0.0747
0.0219 26.0 26754 0.4680 0.3668 0.0758
0.021 27.0 27783 0.5025 0.3746 0.0781
0.0213 28.0 28812 0.4752 0.3541 0.0751
0.0194 29.0 29841 0.4600 0.3759 0.0758
0.0189 30.0 30870 0.4395 0.3432 0.0732
0.0157 31.0 31899 0.4953 0.3593 0.0754
0.0162 32.0 32928 0.4672 0.3462 0.0732
0.0157 33.0 33957 0.4605 0.3518 0.0742
0.0137 34.0 34986 0.4626 0.3462 0.0727
0.0138 35.0 36015 0.4993 0.3460 0.0730
0.0116 36.0 37044 0.4761 0.3501 0.0734
0.0117 37.0 38073 0.4852 0.3437 0.0728
0.0119 38.0 39102 0.5100 0.3469 0.0739
0.0108 39.0 40131 0.4715 0.3393 0.0722
0.0094 40.0 41160 0.4893 0.3592 0.0734
0.0101 41.0 42189 0.4780 0.3480 0.0729
0.0103 42.0 43218 0.4702 0.3576 0.0738
0.0093 43.0 44247 0.4882 0.3456 0.0731
0.0084 44.0 45276 0.4869 0.3389 0.0710
0.0072 45.0 46305 0.5072 0.3456 0.0720
0.0075 46.0 47334 0.5266 0.3435 0.0715
0.0079 47.0 48363 0.4947 0.3409 0.0724
0.0075 48.0 49392 0.5071 0.3354 0.0707
0.0064 49.0 50421 0.5440 0.3328 0.0705
0.0061 50.0 51450 0.4619 0.3359 0.0706
0.0057 51.0 52479 0.4971 0.3333 0.0701
0.006 52.0 53508 0.5319 0.3470 0.0734
0.0058 53.0 54537 0.5140 0.3353 0.0724
0.0049 54.0 55566 0.5213 0.3297 0.0696
0.0049 55.0 56595 0.5396 0.3306 0.0692
0.0047 56.0 57624 0.4992 0.3304 0.0697
0.0044 57.0 58653 0.5217 0.3362 0.0705
0.0045 58.0 59682 0.5248 0.3291 0.0691
0.0038 59.0 60711 0.5136 0.3286 0.0698
0.0042 60.0 61740 0.4938 0.3313 0.0680
0.0037 61.0 62769 0.4934 0.3329 0.0693
0.0031 62.0 63798 0.5179 0.3287 0.0692
0.0036 63.0 64827 0.5062 0.3244 0.0676
0.0037 64.0 65856 0.4886 0.3225 0.0669
0.0029 65.0 66885 0.4942 0.3238 0.0689
0.003 66.0 67914 0.5234 0.3310 0.0680
0.0026 67.0 68943 0.5014 0.3256 0.0688
0.0024 68.0 69972 0.5699 0.3310 0.0691
0.0021 69.0 71001 0.5402 0.3223 0.0674
0.0017 70.0 72030 0.5824 0.3299 0.0703
0.0022 71.0 73059 0.5423 0.3254 0.0681
0.0016 72.0 74088 0.5683 0.3257 0.0673
0.0011 73.0 75117 0.6068 0.3293 0.0690
0.0014 74.0 76146 0.5651 0.3310 0.0681
0.0012 75.0 77175 0.5723 0.3268 0.0681
0.0013 76.0 78204 0.5953 0.3257 0.0666
0.0011 77.0 79233 0.5892 0.3218 0.0666
0.0014 78.0 80262 0.5929 0.3244 0.0679
0.0016 79.0 81291 0.5981 0.3175 0.0659
0.0014 80.0 82320 0.5880 0.3284 0.0681
0.0009 81.0 83349 0.6205 0.3176 0.0657
0.0006 82.0 84378 0.6295 0.3217 0.0660
0.0008 83.0 85407 0.5807 0.3246 0.0670
0.0007 84.0 86436 0.6224 0.3242 0.0666
0.0006 85.0 87465 0.6552 0.3182 0.0660
0.0005 86.0 88494 0.6757 0.3195 0.0670
0.0007 87.0 89523 0.5980 0.3223 0.0667
0.0005 88.0 90552 0.6357 0.3209 0.0667
0.0008 89.0 91581 0.6362 0.3194 0.0662
0.0005 90.0 92610 0.6596 0.3175 0.0666
0.0003 91.0 93639 0.6934 0.3186 0.0663
0.0002 92.0 94668 0.7177 0.3211 0.0671
0.0001 93.0 95697 0.7225 0.3181 0.0662
0.0001 94.0 96726 0.7272 0.3137 0.0656
0.0 95.0 97755 0.7488 0.3144 0.0658
0.0 96.0 98784 0.7746 0.3129 0.0656
0.0 97.0 99813 0.7903 0.3133 0.0657
0.0 98.0 100842 0.8061 0.3129 0.0656
0.0 99.0 101871 0.8173 0.3119 0.0655
0.0 100.0 102900 0.8219 0.3120 0.0655

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs-lg-20hrs-v4

Finetuned
(261)
this model