w2v-bert-2.0-CV_Fleurs-lg-20hrs-v4
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8219
- Wer: 0.3120
- Cer: 0.0655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.9353 | 1.0 | 1029 | 0.4773 | 0.5391 | 0.1166 |
0.3801 | 2.0 | 2058 | 0.3596 | 0.4311 | 0.0915 |
0.3008 | 3.0 | 3087 | 0.3586 | 0.4319 | 0.0903 |
0.252 | 4.0 | 4116 | 0.3576 | 0.3906 | 0.0854 |
0.2175 | 5.0 | 5145 | 0.3192 | 0.3979 | 0.0818 |
0.1932 | 6.0 | 6174 | 0.3230 | 0.3757 | 0.0810 |
0.1727 | 7.0 | 7203 | 0.3530 | 0.3784 | 0.0817 |
0.1568 | 8.0 | 8232 | 0.2885 | 0.3631 | 0.0749 |
0.1401 | 9.0 | 9261 | 0.3374 | 0.3719 | 0.0783 |
0.1237 | 10.0 | 10290 | 0.3464 | 0.3799 | 0.0791 |
0.1119 | 11.0 | 11319 | 0.3175 | 0.3537 | 0.0742 |
0.0993 | 12.0 | 12348 | 0.3254 | 0.3656 | 0.0768 |
0.0877 | 13.0 | 13377 | 0.3709 | 0.3759 | 0.0777 |
0.0791 | 14.0 | 14406 | 0.3799 | 0.3699 | 0.0777 |
0.0687 | 15.0 | 15435 | 0.3888 | 0.3568 | 0.0754 |
0.0599 | 16.0 | 16464 | 0.3878 | 0.3456 | 0.0749 |
0.0537 | 17.0 | 17493 | 0.3574 | 0.3765 | 0.0790 |
0.0476 | 18.0 | 18522 | 0.4234 | 0.3568 | 0.0762 |
0.0443 | 19.0 | 19551 | 0.4370 | 0.3587 | 0.0752 |
0.0387 | 20.0 | 20580 | 0.4226 | 0.3433 | 0.0723 |
0.0372 | 21.0 | 21609 | 0.4647 | 0.3613 | 0.0776 |
0.0327 | 22.0 | 22638 | 0.3934 | 0.3519 | 0.0727 |
0.029 | 23.0 | 23667 | 0.4096 | 0.3457 | 0.0732 |
0.0263 | 24.0 | 24696 | 0.4516 | 0.3584 | 0.0732 |
0.0264 | 25.0 | 25725 | 0.4486 | 0.3584 | 0.0747 |
0.0219 | 26.0 | 26754 | 0.4680 | 0.3668 | 0.0758 |
0.021 | 27.0 | 27783 | 0.5025 | 0.3746 | 0.0781 |
0.0213 | 28.0 | 28812 | 0.4752 | 0.3541 | 0.0751 |
0.0194 | 29.0 | 29841 | 0.4600 | 0.3759 | 0.0758 |
0.0189 | 30.0 | 30870 | 0.4395 | 0.3432 | 0.0732 |
0.0157 | 31.0 | 31899 | 0.4953 | 0.3593 | 0.0754 |
0.0162 | 32.0 | 32928 | 0.4672 | 0.3462 | 0.0732 |
0.0157 | 33.0 | 33957 | 0.4605 | 0.3518 | 0.0742 |
0.0137 | 34.0 | 34986 | 0.4626 | 0.3462 | 0.0727 |
0.0138 | 35.0 | 36015 | 0.4993 | 0.3460 | 0.0730 |
0.0116 | 36.0 | 37044 | 0.4761 | 0.3501 | 0.0734 |
0.0117 | 37.0 | 38073 | 0.4852 | 0.3437 | 0.0728 |
0.0119 | 38.0 | 39102 | 0.5100 | 0.3469 | 0.0739 |
0.0108 | 39.0 | 40131 | 0.4715 | 0.3393 | 0.0722 |
0.0094 | 40.0 | 41160 | 0.4893 | 0.3592 | 0.0734 |
0.0101 | 41.0 | 42189 | 0.4780 | 0.3480 | 0.0729 |
0.0103 | 42.0 | 43218 | 0.4702 | 0.3576 | 0.0738 |
0.0093 | 43.0 | 44247 | 0.4882 | 0.3456 | 0.0731 |
0.0084 | 44.0 | 45276 | 0.4869 | 0.3389 | 0.0710 |
0.0072 | 45.0 | 46305 | 0.5072 | 0.3456 | 0.0720 |
0.0075 | 46.0 | 47334 | 0.5266 | 0.3435 | 0.0715 |
0.0079 | 47.0 | 48363 | 0.4947 | 0.3409 | 0.0724 |
0.0075 | 48.0 | 49392 | 0.5071 | 0.3354 | 0.0707 |
0.0064 | 49.0 | 50421 | 0.5440 | 0.3328 | 0.0705 |
0.0061 | 50.0 | 51450 | 0.4619 | 0.3359 | 0.0706 |
0.0057 | 51.0 | 52479 | 0.4971 | 0.3333 | 0.0701 |
0.006 | 52.0 | 53508 | 0.5319 | 0.3470 | 0.0734 |
0.0058 | 53.0 | 54537 | 0.5140 | 0.3353 | 0.0724 |
0.0049 | 54.0 | 55566 | 0.5213 | 0.3297 | 0.0696 |
0.0049 | 55.0 | 56595 | 0.5396 | 0.3306 | 0.0692 |
0.0047 | 56.0 | 57624 | 0.4992 | 0.3304 | 0.0697 |
0.0044 | 57.0 | 58653 | 0.5217 | 0.3362 | 0.0705 |
0.0045 | 58.0 | 59682 | 0.5248 | 0.3291 | 0.0691 |
0.0038 | 59.0 | 60711 | 0.5136 | 0.3286 | 0.0698 |
0.0042 | 60.0 | 61740 | 0.4938 | 0.3313 | 0.0680 |
0.0037 | 61.0 | 62769 | 0.4934 | 0.3329 | 0.0693 |
0.0031 | 62.0 | 63798 | 0.5179 | 0.3287 | 0.0692 |
0.0036 | 63.0 | 64827 | 0.5062 | 0.3244 | 0.0676 |
0.0037 | 64.0 | 65856 | 0.4886 | 0.3225 | 0.0669 |
0.0029 | 65.0 | 66885 | 0.4942 | 0.3238 | 0.0689 |
0.003 | 66.0 | 67914 | 0.5234 | 0.3310 | 0.0680 |
0.0026 | 67.0 | 68943 | 0.5014 | 0.3256 | 0.0688 |
0.0024 | 68.0 | 69972 | 0.5699 | 0.3310 | 0.0691 |
0.0021 | 69.0 | 71001 | 0.5402 | 0.3223 | 0.0674 |
0.0017 | 70.0 | 72030 | 0.5824 | 0.3299 | 0.0703 |
0.0022 | 71.0 | 73059 | 0.5423 | 0.3254 | 0.0681 |
0.0016 | 72.0 | 74088 | 0.5683 | 0.3257 | 0.0673 |
0.0011 | 73.0 | 75117 | 0.6068 | 0.3293 | 0.0690 |
0.0014 | 74.0 | 76146 | 0.5651 | 0.3310 | 0.0681 |
0.0012 | 75.0 | 77175 | 0.5723 | 0.3268 | 0.0681 |
0.0013 | 76.0 | 78204 | 0.5953 | 0.3257 | 0.0666 |
0.0011 | 77.0 | 79233 | 0.5892 | 0.3218 | 0.0666 |
0.0014 | 78.0 | 80262 | 0.5929 | 0.3244 | 0.0679 |
0.0016 | 79.0 | 81291 | 0.5981 | 0.3175 | 0.0659 |
0.0014 | 80.0 | 82320 | 0.5880 | 0.3284 | 0.0681 |
0.0009 | 81.0 | 83349 | 0.6205 | 0.3176 | 0.0657 |
0.0006 | 82.0 | 84378 | 0.6295 | 0.3217 | 0.0660 |
0.0008 | 83.0 | 85407 | 0.5807 | 0.3246 | 0.0670 |
0.0007 | 84.0 | 86436 | 0.6224 | 0.3242 | 0.0666 |
0.0006 | 85.0 | 87465 | 0.6552 | 0.3182 | 0.0660 |
0.0005 | 86.0 | 88494 | 0.6757 | 0.3195 | 0.0670 |
0.0007 | 87.0 | 89523 | 0.5980 | 0.3223 | 0.0667 |
0.0005 | 88.0 | 90552 | 0.6357 | 0.3209 | 0.0667 |
0.0008 | 89.0 | 91581 | 0.6362 | 0.3194 | 0.0662 |
0.0005 | 90.0 | 92610 | 0.6596 | 0.3175 | 0.0666 |
0.0003 | 91.0 | 93639 | 0.6934 | 0.3186 | 0.0663 |
0.0002 | 92.0 | 94668 | 0.7177 | 0.3211 | 0.0671 |
0.0001 | 93.0 | 95697 | 0.7225 | 0.3181 | 0.0662 |
0.0001 | 94.0 | 96726 | 0.7272 | 0.3137 | 0.0656 |
0.0 | 95.0 | 97755 | 0.7488 | 0.3144 | 0.0658 |
0.0 | 96.0 | 98784 | 0.7746 | 0.3129 | 0.0656 |
0.0 | 97.0 | 99813 | 0.7903 | 0.3133 | 0.0657 |
0.0 | 98.0 | 100842 | 0.8061 | 0.3129 | 0.0656 |
0.0 | 99.0 | 101871 | 0.8173 | 0.3119 | 0.0655 |
0.0 | 100.0 | 102900 | 0.8219 | 0.3120 | 0.0655 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs-lg-20hrs-v4
Base model
facebook/w2v-bert-2.0