w2v-bert-2.0-CV_Fleurs-lg-5hrs-v4
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9094
- Wer: 0.3815
- Cer: 0.0808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.9959 | 1.0 | 258 | 0.5475 | 0.6078 | 0.1338 |
0.5447 | 2.0 | 516 | 0.5650 | 0.5979 | 0.1310 |
0.4574 | 3.0 | 774 | 0.4544 | 0.5169 | 0.1122 |
0.3712 | 4.0 | 1032 | 0.4466 | 0.5049 | 0.1086 |
0.3187 | 5.0 | 1290 | 0.4438 | 0.4769 | 0.1004 |
0.276 | 6.0 | 1548 | 0.4189 | 0.4794 | 0.1057 |
0.235 | 7.0 | 1806 | 0.4696 | 0.4797 | 0.1004 |
0.2086 | 8.0 | 2064 | 0.4218 | 0.4603 | 0.0963 |
0.1883 | 9.0 | 2322 | 0.4250 | 0.4521 | 0.0976 |
0.1671 | 10.0 | 2580 | 0.4507 | 0.4586 | 0.0973 |
0.1466 | 11.0 | 2838 | 0.4738 | 0.4634 | 0.0970 |
0.1313 | 12.0 | 3096 | 0.4601 | 0.4411 | 0.0936 |
0.1181 | 13.0 | 3354 | 0.4736 | 0.4217 | 0.0891 |
0.1026 | 14.0 | 3612 | 0.4470 | 0.4278 | 0.0912 |
0.092 | 15.0 | 3870 | 0.4730 | 0.4620 | 0.0956 |
0.083 | 16.0 | 4128 | 0.5339 | 0.4482 | 0.0937 |
0.0744 | 17.0 | 4386 | 0.4855 | 0.4509 | 0.0944 |
0.0697 | 18.0 | 4644 | 0.5221 | 0.4375 | 0.0903 |
0.0602 | 19.0 | 4902 | 0.5148 | 0.4271 | 0.0894 |
0.056 | 20.0 | 5160 | 0.5518 | 0.4313 | 0.0898 |
0.05 | 21.0 | 5418 | 0.5374 | 0.4310 | 0.0912 |
0.0464 | 22.0 | 5676 | 0.5167 | 0.4265 | 0.0899 |
0.0453 | 23.0 | 5934 | 0.5782 | 0.4227 | 0.0881 |
0.0412 | 24.0 | 6192 | 0.5275 | 0.4353 | 0.0929 |
0.0369 | 25.0 | 6450 | 0.6112 | 0.4234 | 0.0919 |
0.0339 | 26.0 | 6708 | 0.6159 | 0.4164 | 0.0909 |
0.0316 | 27.0 | 6966 | 0.5938 | 0.4032 | 0.0845 |
0.0263 | 28.0 | 7224 | 0.5883 | 0.4094 | 0.0871 |
0.0268 | 29.0 | 7482 | 0.6013 | 0.4148 | 0.0871 |
0.0269 | 30.0 | 7740 | 0.6137 | 0.4218 | 0.0912 |
0.0234 | 31.0 | 7998 | 0.5840 | 0.4099 | 0.0873 |
0.0229 | 32.0 | 8256 | 0.6286 | 0.4041 | 0.0861 |
0.0205 | 33.0 | 8514 | 0.5923 | 0.3968 | 0.0859 |
0.0196 | 34.0 | 8772 | 0.6188 | 0.4050 | 0.0895 |
0.0191 | 35.0 | 9030 | 0.6255 | 0.4149 | 0.0872 |
0.0185 | 36.0 | 9288 | 0.5938 | 0.4104 | 0.0886 |
0.0163 | 37.0 | 9546 | 0.6004 | 0.4076 | 0.0864 |
0.0171 | 38.0 | 9804 | 0.6485 | 0.4010 | 0.0865 |
0.0163 | 39.0 | 10062 | 0.6360 | 0.4035 | 0.0851 |
0.0144 | 40.0 | 10320 | 0.6230 | 0.4107 | 0.0879 |
0.0133 | 41.0 | 10578 | 0.6123 | 0.4066 | 0.0878 |
0.0131 | 42.0 | 10836 | 0.6532 | 0.4037 | 0.0872 |
0.0122 | 43.0 | 11094 | 0.6613 | 0.4064 | 0.0865 |
0.0127 | 44.0 | 11352 | 0.6279 | 0.4023 | 0.0849 |
0.0115 | 45.0 | 11610 | 0.6950 | 0.3994 | 0.0845 |
0.01 | 46.0 | 11868 | 0.7085 | 0.3924 | 0.0849 |
0.0093 | 47.0 | 12126 | 0.6729 | 0.4131 | 0.0871 |
0.0106 | 48.0 | 12384 | 0.6983 | 0.4096 | 0.0892 |
0.0087 | 49.0 | 12642 | 0.6784 | 0.4139 | 0.0885 |
0.0093 | 50.0 | 12900 | 0.6546 | 0.4025 | 0.0851 |
0.0088 | 51.0 | 13158 | 0.6772 | 0.3998 | 0.0846 |
0.0086 | 52.0 | 13416 | 0.6763 | 0.3991 | 0.0863 |
0.0075 | 53.0 | 13674 | 0.6990 | 0.3952 | 0.0841 |
0.0062 | 54.0 | 13932 | 0.6648 | 0.3936 | 0.0832 |
0.0072 | 55.0 | 14190 | 0.7062 | 0.4115 | 0.0866 |
0.0066 | 56.0 | 14448 | 0.6819 | 0.4044 | 0.0868 |
0.0053 | 57.0 | 14706 | 0.7053 | 0.4044 | 0.0859 |
0.004 | 58.0 | 14964 | 0.6890 | 0.3966 | 0.0833 |
0.0038 | 59.0 | 15222 | 0.7095 | 0.4009 | 0.0850 |
0.005 | 60.0 | 15480 | 0.6999 | 0.3943 | 0.0850 |
0.0055 | 61.0 | 15738 | 0.7265 | 0.3958 | 0.0846 |
0.0043 | 62.0 | 15996 | 0.7267 | 0.3927 | 0.0837 |
0.0038 | 63.0 | 16254 | 0.7014 | 0.3868 | 0.0837 |
0.0026 | 64.0 | 16512 | 0.7609 | 0.3910 | 0.0835 |
0.0024 | 65.0 | 16770 | 0.7436 | 0.4052 | 0.0875 |
0.0044 | 66.0 | 17028 | 0.7610 | 0.3849 | 0.0827 |
0.0049 | 67.0 | 17286 | 0.7387 | 0.4077 | 0.0874 |
0.0057 | 68.0 | 17544 | 0.7030 | 0.3888 | 0.0833 |
0.0028 | 69.0 | 17802 | 0.7499 | 0.3971 | 0.0834 |
0.0027 | 70.0 | 18060 | 0.6728 | 0.3918 | 0.0835 |
0.0021 | 71.0 | 18318 | 0.7420 | 0.3884 | 0.0835 |
0.0024 | 72.0 | 18576 | 0.7596 | 0.3931 | 0.0843 |
0.0024 | 73.0 | 18834 | 0.7565 | 0.3874 | 0.0816 |
0.0019 | 74.0 | 19092 | 0.7420 | 0.3821 | 0.0814 |
0.0015 | 75.0 | 19350 | 0.7394 | 0.3845 | 0.0829 |
0.0012 | 76.0 | 19608 | 0.8261 | 0.3752 | 0.0814 |
0.0012 | 77.0 | 19866 | 0.7902 | 0.3849 | 0.0824 |
0.0008 | 78.0 | 20124 | 0.7845 | 0.3758 | 0.0804 |
0.001 | 79.0 | 20382 | 0.7995 | 0.3759 | 0.0809 |
0.0008 | 80.0 | 20640 | 0.7891 | 0.3844 | 0.0827 |
0.0028 | 81.0 | 20898 | 0.7151 | 0.3861 | 0.0823 |
0.0005 | 82.0 | 21156 | 0.7941 | 0.3850 | 0.0820 |
0.0005 | 83.0 | 21414 | 0.8362 | 0.3943 | 0.0836 |
0.0005 | 84.0 | 21672 | 0.8138 | 0.3809 | 0.0807 |
0.0013 | 85.0 | 21930 | 0.7675 | 0.3958 | 0.0837 |
0.001 | 86.0 | 22188 | 0.7725 | 0.3894 | 0.0828 |
0.0008 | 87.0 | 22446 | 0.7768 | 0.3907 | 0.0829 |
0.0004 | 88.0 | 22704 | 0.7767 | 0.3862 | 0.0817 |
0.0008 | 89.0 | 22962 | 0.7997 | 0.3849 | 0.0819 |
0.0 | 90.0 | 23220 | 0.8321 | 0.3819 | 0.0814 |
0.0 | 91.0 | 23478 | 0.8475 | 0.3820 | 0.0808 |
0.0 | 92.0 | 23736 | 0.8629 | 0.3815 | 0.0808 |
0.0 | 93.0 | 23994 | 0.8769 | 0.3808 | 0.0807 |
0.0 | 94.0 | 24252 | 0.8871 | 0.3808 | 0.0807 |
0.0 | 95.0 | 24510 | 0.9020 | 0.3821 | 0.0808 |
0.0 | 96.0 | 24768 | 0.9094 | 0.3815 | 0.0808 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 31
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs-lg-5hrs-v4
Base model
facebook/w2v-bert-2.0