w2v-bert-2.0-CV_Fleurs-lg-5hrs-v4

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9094
  • Wer: 0.3815
  • Cer: 0.0808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.9959 1.0 258 0.5475 0.6078 0.1338
0.5447 2.0 516 0.5650 0.5979 0.1310
0.4574 3.0 774 0.4544 0.5169 0.1122
0.3712 4.0 1032 0.4466 0.5049 0.1086
0.3187 5.0 1290 0.4438 0.4769 0.1004
0.276 6.0 1548 0.4189 0.4794 0.1057
0.235 7.0 1806 0.4696 0.4797 0.1004
0.2086 8.0 2064 0.4218 0.4603 0.0963
0.1883 9.0 2322 0.4250 0.4521 0.0976
0.1671 10.0 2580 0.4507 0.4586 0.0973
0.1466 11.0 2838 0.4738 0.4634 0.0970
0.1313 12.0 3096 0.4601 0.4411 0.0936
0.1181 13.0 3354 0.4736 0.4217 0.0891
0.1026 14.0 3612 0.4470 0.4278 0.0912
0.092 15.0 3870 0.4730 0.4620 0.0956
0.083 16.0 4128 0.5339 0.4482 0.0937
0.0744 17.0 4386 0.4855 0.4509 0.0944
0.0697 18.0 4644 0.5221 0.4375 0.0903
0.0602 19.0 4902 0.5148 0.4271 0.0894
0.056 20.0 5160 0.5518 0.4313 0.0898
0.05 21.0 5418 0.5374 0.4310 0.0912
0.0464 22.0 5676 0.5167 0.4265 0.0899
0.0453 23.0 5934 0.5782 0.4227 0.0881
0.0412 24.0 6192 0.5275 0.4353 0.0929
0.0369 25.0 6450 0.6112 0.4234 0.0919
0.0339 26.0 6708 0.6159 0.4164 0.0909
0.0316 27.0 6966 0.5938 0.4032 0.0845
0.0263 28.0 7224 0.5883 0.4094 0.0871
0.0268 29.0 7482 0.6013 0.4148 0.0871
0.0269 30.0 7740 0.6137 0.4218 0.0912
0.0234 31.0 7998 0.5840 0.4099 0.0873
0.0229 32.0 8256 0.6286 0.4041 0.0861
0.0205 33.0 8514 0.5923 0.3968 0.0859
0.0196 34.0 8772 0.6188 0.4050 0.0895
0.0191 35.0 9030 0.6255 0.4149 0.0872
0.0185 36.0 9288 0.5938 0.4104 0.0886
0.0163 37.0 9546 0.6004 0.4076 0.0864
0.0171 38.0 9804 0.6485 0.4010 0.0865
0.0163 39.0 10062 0.6360 0.4035 0.0851
0.0144 40.0 10320 0.6230 0.4107 0.0879
0.0133 41.0 10578 0.6123 0.4066 0.0878
0.0131 42.0 10836 0.6532 0.4037 0.0872
0.0122 43.0 11094 0.6613 0.4064 0.0865
0.0127 44.0 11352 0.6279 0.4023 0.0849
0.0115 45.0 11610 0.6950 0.3994 0.0845
0.01 46.0 11868 0.7085 0.3924 0.0849
0.0093 47.0 12126 0.6729 0.4131 0.0871
0.0106 48.0 12384 0.6983 0.4096 0.0892
0.0087 49.0 12642 0.6784 0.4139 0.0885
0.0093 50.0 12900 0.6546 0.4025 0.0851
0.0088 51.0 13158 0.6772 0.3998 0.0846
0.0086 52.0 13416 0.6763 0.3991 0.0863
0.0075 53.0 13674 0.6990 0.3952 0.0841
0.0062 54.0 13932 0.6648 0.3936 0.0832
0.0072 55.0 14190 0.7062 0.4115 0.0866
0.0066 56.0 14448 0.6819 0.4044 0.0868
0.0053 57.0 14706 0.7053 0.4044 0.0859
0.004 58.0 14964 0.6890 0.3966 0.0833
0.0038 59.0 15222 0.7095 0.4009 0.0850
0.005 60.0 15480 0.6999 0.3943 0.0850
0.0055 61.0 15738 0.7265 0.3958 0.0846
0.0043 62.0 15996 0.7267 0.3927 0.0837
0.0038 63.0 16254 0.7014 0.3868 0.0837
0.0026 64.0 16512 0.7609 0.3910 0.0835
0.0024 65.0 16770 0.7436 0.4052 0.0875
0.0044 66.0 17028 0.7610 0.3849 0.0827
0.0049 67.0 17286 0.7387 0.4077 0.0874
0.0057 68.0 17544 0.7030 0.3888 0.0833
0.0028 69.0 17802 0.7499 0.3971 0.0834
0.0027 70.0 18060 0.6728 0.3918 0.0835
0.0021 71.0 18318 0.7420 0.3884 0.0835
0.0024 72.0 18576 0.7596 0.3931 0.0843
0.0024 73.0 18834 0.7565 0.3874 0.0816
0.0019 74.0 19092 0.7420 0.3821 0.0814
0.0015 75.0 19350 0.7394 0.3845 0.0829
0.0012 76.0 19608 0.8261 0.3752 0.0814
0.0012 77.0 19866 0.7902 0.3849 0.0824
0.0008 78.0 20124 0.7845 0.3758 0.0804
0.001 79.0 20382 0.7995 0.3759 0.0809
0.0008 80.0 20640 0.7891 0.3844 0.0827
0.0028 81.0 20898 0.7151 0.3861 0.0823
0.0005 82.0 21156 0.7941 0.3850 0.0820
0.0005 83.0 21414 0.8362 0.3943 0.0836
0.0005 84.0 21672 0.8138 0.3809 0.0807
0.0013 85.0 21930 0.7675 0.3958 0.0837
0.001 86.0 22188 0.7725 0.3894 0.0828
0.0008 87.0 22446 0.7768 0.3907 0.0829
0.0004 88.0 22704 0.7767 0.3862 0.0817
0.0008 89.0 22962 0.7997 0.3849 0.0819
0.0 90.0 23220 0.8321 0.3819 0.0814
0.0 91.0 23478 0.8475 0.3820 0.0808
0.0 92.0 23736 0.8629 0.3815 0.0808
0.0 93.0 23994 0.8769 0.3808 0.0807
0.0 94.0 24252 0.8871 0.3808 0.0807
0.0 95.0 24510 0.9020 0.3821 0.0808
0.0 96.0 24768 0.9094 0.3815 0.0808

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
8
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs-lg-5hrs-v4

Finetuned
(241)
this model