sulaimank's picture
End of training
beb74fa verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-CV_Fleurs_AMMI_ALFFA-sw-20hrs-v1
    results: []

w2v-bert-2.0-CV_Fleurs_AMMI_ALFFA-sw-20hrs-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5645
  • Wer: 0.2500
  • Cer: 0.0899

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.7972 1.0 2970 0.6806 0.2849 0.0958
0.4586 2.0 5940 0.6101 0.2595 0.0922
0.3832 3.0 8910 0.5412 0.2290 0.0789
0.3513 4.0 11880 0.4830 0.2379 0.0865
0.3284 5.0 14850 0.5698 0.2259 0.0800
0.3268 6.0 17820 0.6145 0.2308 0.0810
0.3129 7.0 20790 0.5390 0.2517 0.0883
0.2935 8.0 23760 0.6146 0.2366 0.0858
0.2829 9.0 26730 0.6222 0.2571 0.0892
0.2835 10.0 29700 0.6284 0.2480 0.0907
0.2709 11.0 32670 0.6553 0.2542 0.0923
0.2468 12.0 35640 0.6046 0.2406 0.0868
0.2337 13.0 38610 0.6232 0.2411 0.0880
0.2037 14.0 41580 0.6318 0.2290 0.0837
0.2021 15.0 44550 0.5645 0.2500 0.0899

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1