w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-10hrs-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7263
  • Wer: 0.2538
  • Cer: 0.0790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.4981 1.0 192 2.8671 0.9999 0.9897
1.6608 2.0 384 0.6305 0.4155 0.1240
0.5157 3.0 576 0.5014 0.3768 0.1096
0.3888 4.0 768 0.4831 0.3304 0.1022
0.3245 5.0 960 0.4152 0.2813 0.0879
0.2763 6.0 1152 0.4413 0.2688 0.0851
0.2328 7.0 1344 0.4405 0.2748 0.0852
0.2014 8.0 1536 0.4643 0.2628 0.0800
0.1733 9.0 1728 0.4771 0.2805 0.0847
0.1544 10.0 1920 0.4879 0.2505 0.0784
0.1318 11.0 2112 0.5000 0.2383 0.0760
0.1266 12.0 2304 0.5216 0.2546 0.0782
0.1086 13.0 2496 0.5079 0.2431 0.0736
0.0938 14.0 2688 0.5661 0.2323 0.0719
0.0806 15.0 2880 0.5603 0.2272 0.0710
0.0721 16.0 3072 0.5914 0.2279 0.0728
0.0665 17.0 3264 0.6192 0.2261 0.0725
0.062 18.0 3456 0.5625 0.2583 0.0787
0.0556 19.0 3648 0.5995 0.2371 0.0773
0.0487 20.0 3840 0.5746 0.2464 0.0744
0.0401 21.0 4032 0.6108 0.2469 0.0737
0.0382 22.0 4224 0.6207 0.2397 0.0774
0.035 23.0 4416 0.6793 0.2461 0.0752
0.0302 24.0 4608 0.5576 0.2404 0.0735
0.0244 25.0 4800 0.6412 0.2190 0.0704
0.022 26.0 4992 0.6204 0.2355 0.0753
0.0225 27.0 5184 0.6687 0.2248 0.0706
0.0172 28.0 5376 0.6542 0.2355 0.0749
0.0166 29.0 5568 0.6507 0.2242 0.0713
0.0131 30.0 5760 0.6806 0.2292 0.0713
0.0121 31.0 5952 0.6924 0.2377 0.0749
0.0115 32.0 6144 0.6961 0.2283 0.0732
0.011 33.0 6336 0.7073 0.2269 0.0712
0.0096 34.0 6528 0.7129 0.2325 0.0714
0.0086 35.0 6720 0.7263 0.2538 0.0790

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-10hrs-v1

Finetuned
(264)
this model