You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v3

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9406
  • Wer: 0.2246
  • Cer: 0.0716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.9645 0.9949 98 0.8966 0.7007 0.1938
0.6444 2.0 197 0.5263 0.3547 0.1095
0.4524 2.9949 295 0.4768 0.3064 0.0953
0.3671 4.0 394 0.4343 0.2827 0.0894
0.3124 4.9949 492 0.4295 0.2712 0.0888
0.2645 6.0 591 0.4370 0.2709 0.0873
0.2301 6.9949 689 0.4414 0.2643 0.0809
0.1917 8.0 788 0.4229 0.2525 0.0791
0.168 8.9949 886 0.4027 0.2495 0.0810
0.1428 10.0 985 0.4432 0.2583 0.0815
0.1299 10.9949 1083 0.4514 0.2624 0.0812
0.1087 12.0 1182 0.4549 0.2467 0.0762
0.0921 12.9949 1280 0.4699 0.2388 0.0755
0.0791 14.0 1379 0.5294 0.2340 0.0733
0.0749 14.9949 1477 0.5567 0.2490 0.0785
0.0666 16.0 1576 0.5504 0.2511 0.0823
0.0608 16.9949 1674 0.5643 0.2359 0.0747
0.049 18.0 1773 0.5892 0.2351 0.0738
0.0435 18.9949 1871 0.5814 0.2431 0.0757
0.0397 20.0 1970 0.6019 0.2494 0.0773
0.0351 20.9949 2068 0.6276 0.2517 0.0775
0.0298 22.0 2167 0.6176 0.2426 0.0763
0.0263 22.9949 2265 0.6573 0.2350 0.0743
0.0242 24.0 2364 0.6754 0.2369 0.0751
0.023 24.9949 2462 0.6835 0.2387 0.0768
0.019 26.0 2561 0.7021 0.2340 0.0737
0.0175 26.9949 2659 0.7082 0.2449 0.0758
0.0157 28.0 2758 0.7215 0.2291 0.0726
0.0136 28.9949 2856 0.7086 0.2391 0.0743
0.0117 30.0 2955 0.7628 0.2402 0.0769
0.0148 30.9949 3053 0.7502 0.2466 0.0777
0.011 32.0 3152 0.7490 0.2417 0.0753
0.0095 32.9949 3250 0.7873 0.2372 0.0742
0.0078 34.0 3349 0.8005 0.2347 0.0733
0.0068 34.9949 3447 0.8139 0.2408 0.0742
0.0098 36.0 3546 0.8041 0.2432 0.0767
0.006 36.9949 3644 0.8383 0.2323 0.0732
0.0052 38.0 3743 0.9155 0.2294 0.0735
0.0092 38.9949 3841 0.9501 0.2222 0.0716
0.0155 40.0 3940 0.8676 0.2316 0.0731
0.0053 40.9949 4038 0.8519 0.2302 0.0723
0.0041 42.0 4137 0.8310 0.2365 0.0752
0.0035 42.9949 4235 0.8959 0.2368 0.0731
0.003 44.0 4334 0.8903 0.2327 0.0730
0.0029 44.9949 4432 0.9306 0.2269 0.0715
0.0029 46.0 4531 1.0210 0.2346 0.0721
0.0055 46.9949 4629 1.0385 0.2362 0.0725
0.0041 48.0 4728 0.9412 0.2376 0.0726
0.0027 48.9949 4826 0.9144 0.2428 0.0737
0.0021 50.0 4925 0.9316 0.2520 0.0754
0.0024 50.9949 5023 0.9214 0.2300 0.0726
0.0011 52.0 5122 0.9172 0.2315 0.0731
0.0011 52.9949 5220 0.9218 0.2225 0.0715
0.0009 54.0 5319 0.9406 0.2246 0.0716

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
21
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v3

Finetuned
(229)
this model

Collection including asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v3