dmusingu's picture
asr-africa/w2v2-bert-Wolof-1-hour-Google-Fleurs-dataset
67aac89 verified
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: w2v2-bert-Wolof-1-hour-Google-Fleurs-dataset
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: wo_sn
split: None
args: wo_sn
metrics:
- name: Wer
type: wer
value: 0.5129422403074488
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/614irv62)
# w2v2-bert-Wolof-1-hour-Google-Fleurs-dataset
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0719
- Wer: 0.5129
- Cer: 0.1804
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.8009 | 25.0 | 200 | 1.5180 | 0.5218 | 0.1838 |
| 0.0103 | 50.0 | 400 | 2.0719 | 0.5129 | 0.1804 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.19.1