w2v2-bert-Wolof-5-hours-Google-Fleurs-dataset
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the fleurs dataset. It achieves the following results on the evaluation set:
- eval_loss: 1.4897
- eval_wer: 0.4518
- eval_cer: 0.1503
- eval_runtime: 47.5107
- eval_samples_per_second: 7.809
- eval_steps_per_second: 0.989
- epoch: 39.02
- step: 1600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for asr-africa/w2v2-bert-Wolof-5-hours-Google-Fleurs-dataset
Base model
facebook/w2v-bert-2.0