metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: w2v2_bert-Wolof-10-hours-alffa-plus-fleurs-dataset
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: wo_sn
split: None
args: wo_sn
metrics:
- name: Wer
type: wer
value: 0.4684414448193976
w2v2_bert-Wolof-10-hours-alffa-plus-fleurs-dataset
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.7861
- Wer: 0.4684
- Cer: 0.1628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.4511 | 2.3704 | 400 | 0.9136 | 0.6117 | 0.2060 |
0.6242 | 4.7407 | 800 | 1.1236 | 0.7233 | 0.2499 |
0.6014 | 7.1111 | 1200 | 1.1048 | 0.6495 | 0.2343 |
0.4898 | 9.4815 | 1600 | 1.0724 | 0.6610 | 0.2389 |
0.4124 | 11.8519 | 2000 | 0.9146 | 0.5919 | 0.2216 |
0.3378 | 14.2222 | 2400 | 1.0265 | 0.5888 | 0.2079 |
0.2931 | 16.5926 | 2800 | 0.8130 | 0.5017 | 0.1818 |
0.2369 | 18.9630 | 3200 | 1.0162 | 0.5872 | 0.2286 |
0.1975 | 21.3333 | 3600 | 0.7969 | 0.4896 | 0.1744 |
0.1432 | 23.7037 | 4000 | 0.8140 | 0.5291 | 0.1880 |
0.1176 | 26.0741 | 4400 | 0.8178 | 0.5812 | 0.2064 |
0.0864 | 28.4444 | 4800 | 1.0055 | 0.4963 | 0.1741 |
0.0674 | 30.8148 | 5200 | 0.8577 | 0.5019 | 0.1770 |
0.0494 | 33.1852 | 5600 | 0.9468 | 0.5139 | 0.1766 |
0.0356 | 35.5556 | 6000 | 1.0305 | 0.4718 | 0.1671 |
0.0213 | 37.9259 | 6400 | 1.1650 | 0.4986 | 0.1750 |
0.0144 | 40.2963 | 6800 | 1.2664 | 0.4763 | 0.1697 |
0.0077 | 42.6667 | 7200 | 1.3433 | 0.4687 | 0.1620 |
0.0039 | 45.0370 | 7600 | 1.5958 | 0.4776 | 0.1664 |
0.0021 | 47.4074 | 8000 | 1.7292 | 0.4729 | 0.1649 |
0.0009 | 49.7778 | 8400 | 1.7861 | 0.4684 | 0.1628 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.19.1