w2v2_bert-Wolof-28-hours-alffa-plus-fleurs-dataset
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.7814
- Wer: 0.4379
- Cer: 0.1524
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.3117 | 0.3643 | 400 | 1.0506 | 0.6341 | 0.2221 |
0.6003 | 0.7286 | 800 | 0.8588 | 0.5837 | 0.1976 |
0.5505 | 1.0929 | 1200 | 0.7719 | 0.5297 | 0.1822 |
0.5277 | 1.4572 | 1600 | 0.7566 | 0.5279 | 0.1722 |
0.5204 | 1.8215 | 2000 | 0.7483 | 0.5400 | 0.1853 |
0.5097 | 2.1858 | 2400 | 0.6775 | 0.5114 | 0.1724 |
0.5058 | 2.5501 | 2800 | 0.7678 | 0.5563 | 0.2016 |
0.5238 | 2.9144 | 3200 | 0.7946 | 0.5721 | 0.2025 |
0.5272 | 3.2787 | 3600 | 0.8778 | 0.5666 | 0.2171 |
0.5451 | 3.6430 | 4000 | 0.7964 | 0.5638 | 0.2050 |
0.557 | 4.0073 | 4400 | 0.8373 | 0.5667 | 0.2119 |
0.525 | 4.3716 | 4800 | 0.7748 | 0.5472 | 0.1924 |
0.5527 | 4.7359 | 5200 | 0.9768 | 0.6022 | 0.2476 |
0.5546 | 5.1002 | 5600 | 0.9679 | 0.6175 | 0.2315 |
0.524 | 5.4645 | 6000 | 0.8655 | 0.6170 | 0.2297 |
0.517 | 5.8288 | 6400 | 0.9147 | 0.6181 | 0.2262 |
0.4996 | 6.1931 | 6800 | 0.9784 | 0.6436 | 0.2970 |
0.4707 | 6.5574 | 7200 | 0.8462 | 0.5831 | 0.2189 |
0.484 | 6.9217 | 7600 | 0.9278 | 0.5697 | 0.2127 |
0.4413 | 7.2860 | 8000 | 0.9034 | 0.6156 | 0.2416 |
0.4386 | 7.6503 | 8400 | 0.9047 | 0.6102 | 0.2517 |
0.4138 | 8.0146 | 8800 | 0.8722 | 0.5843 | 0.2124 |
0.383 | 8.3789 | 9200 | 0.8663 | 0.6164 | 0.2370 |
0.3857 | 8.7432 | 9600 | 0.9396 | 0.5816 | 0.2361 |
0.3813 | 9.1075 | 10000 | 0.8662 | 0.6306 | 0.2451 |
0.3445 | 9.4718 | 10400 | 0.8234 | 0.5586 | 0.2111 |
0.3635 | 9.8361 | 10800 | 0.8676 | 0.5675 | 0.2314 |
0.3428 | 10.2004 | 11200 | 0.8794 | 0.5669 | 0.2251 |
0.3196 | 10.5647 | 11600 | 0.8398 | 0.5421 | 0.2090 |
0.3083 | 10.9290 | 12000 | 0.8148 | 0.5517 | 0.2203 |
0.2969 | 11.2933 | 12400 | 0.7556 | 0.5435 | 0.1995 |
0.2914 | 11.6576 | 12800 | 0.8325 | 0.5544 | 0.2109 |
0.2893 | 12.0219 | 13200 | 0.7453 | 0.5317 | 0.2037 |
0.2541 | 12.3862 | 13600 | 0.8518 | 0.5542 | 0.2170 |
0.2705 | 12.7505 | 14000 | 0.7374 | 0.5296 | 0.1921 |
0.2588 | 13.1148 | 14400 | 0.7741 | 0.5114 | 0.1910 |
0.2316 | 13.4791 | 14800 | 0.7961 | 0.5250 | 0.1943 |
0.2351 | 13.8434 | 15200 | 0.7988 | 0.5542 | 0.2155 |
0.2256 | 14.2077 | 15600 | 0.7971 | 0.5367 | 0.2014 |
0.2139 | 14.5719 | 16000 | 0.7724 | 0.5036 | 0.1855 |
0.2095 | 14.9362 | 16400 | 0.7601 | 0.5055 | 0.1848 |
0.1909 | 15.3005 | 16800 | 0.7622 | 0.5144 | 0.1859 |
0.1945 | 15.6648 | 17200 | 0.7337 | 0.5081 | 0.1855 |
0.1895 | 16.0291 | 17600 | 0.8038 | 0.5332 | 0.1965 |
0.1644 | 16.3934 | 18000 | 0.7720 | 0.5432 | 0.2024 |
0.175 | 16.7577 | 18400 | 0.7946 | 0.5175 | 0.1917 |
0.1786 | 17.1220 | 18800 | 0.7847 | 0.5441 | 0.1992 |
0.1617 | 17.4863 | 19200 | 0.7441 | 0.5015 | 0.1882 |
0.1529 | 17.8506 | 19600 | 0.7367 | 0.5024 | 0.1832 |
0.1437 | 18.2149 | 20000 | 0.7440 | 0.4999 | 0.1815 |
0.1348 | 18.5792 | 20400 | 0.7607 | 0.5010 | 0.1840 |
0.1421 | 18.9435 | 20800 | 0.7563 | 0.5430 | 0.1964 |
0.129 | 19.3078 | 21200 | 0.7929 | 0.5015 | 0.1855 |
0.1246 | 19.6721 | 21600 | 0.7812 | 0.5223 | 0.1943 |
0.1341 | 20.0364 | 22000 | 0.8550 | 0.5188 | 0.1985 |
0.1122 | 20.4007 | 22400 | 0.7657 | 0.5084 | 0.1875 |
0.1127 | 20.7650 | 22800 | 0.7788 | 0.5211 | 0.1896 |
0.1131 | 21.1293 | 23200 | 0.8108 | 0.4675 | 0.1706 |
0.0977 | 21.4936 | 23600 | 0.7568 | 0.5405 | 0.1895 |
0.0993 | 21.8579 | 24000 | 0.7105 | 0.4919 | 0.1768 |
0.0921 | 22.2222 | 24400 | 0.8427 | 0.4973 | 0.1843 |
0.0905 | 22.5865 | 24800 | 0.7752 | 0.5114 | 0.1785 |
0.0903 | 22.9508 | 25200 | 0.7315 | 0.5051 | 0.1800 |
0.0786 | 23.3151 | 25600 | 0.8089 | 0.4909 | 0.1827 |
0.0911 | 23.6794 | 26000 | 0.8048 | 0.5161 | 0.1877 |
0.0875 | 24.0437 | 26400 | 0.8438 | 0.5413 | 0.1979 |
0.0775 | 24.4080 | 26800 | 0.8683 | 0.5032 | 0.1842 |
0.0798 | 24.7723 | 27200 | 0.7693 | 0.5066 | 0.1846 |
0.0681 | 25.1366 | 27600 | 0.7252 | 0.4901 | 0.1731 |
0.0621 | 25.5009 | 28000 | 0.7520 | 0.4814 | 0.1710 |
0.0645 | 25.8652 | 28400 | 0.7620 | 0.4706 | 0.1660 |
0.0636 | 26.2295 | 28800 | 0.7567 | 0.4823 | 0.1709 |
0.0579 | 26.5938 | 29200 | 0.7601 | 0.4824 | 0.1708 |
0.0626 | 26.9581 | 29600 | 0.7750 | 0.4738 | 0.1714 |
0.053 | 27.3224 | 30000 | 0.7709 | 0.4751 | 0.1692 |
0.0513 | 27.6867 | 30400 | 0.7936 | 0.4738 | 0.1692 |
0.0575 | 28.0510 | 30800 | 0.8438 | 0.4816 | 0.1726 |
0.0487 | 28.4153 | 31200 | 0.7352 | 0.4718 | 0.1656 |
0.0462 | 28.7796 | 31600 | 0.7660 | 0.4612 | 0.1621 |
0.0434 | 29.1439 | 32000 | 0.7735 | 0.4778 | 0.1684 |
0.0424 | 29.5082 | 32400 | 0.8004 | 0.4660 | 0.1628 |
0.0405 | 29.8725 | 32800 | 0.7835 | 0.4713 | 0.1637 |
0.0374 | 30.2368 | 33200 | 0.8197 | 0.4632 | 0.1664 |
0.0378 | 30.6011 | 33600 | 0.8158 | 0.4658 | 0.1620 |
0.0347 | 30.9654 | 34000 | 0.8216 | 0.4600 | 0.1578 |
0.033 | 31.3297 | 34400 | 0.7858 | 0.4769 | 0.1686 |
0.0325 | 31.6940 | 34800 | 0.7995 | 0.4725 | 0.1670 |
0.0312 | 32.0583 | 35200 | 0.8798 | 0.4961 | 0.1765 |
0.0297 | 32.4226 | 35600 | 0.8786 | 0.4604 | 0.1623 |
0.031 | 32.7869 | 36000 | 0.8855 | 0.4665 | 0.1630 |
0.0278 | 33.1512 | 36400 | 0.8873 | 0.4732 | 0.1702 |
0.024 | 33.5155 | 36800 | 0.9000 | 0.4787 | 0.1693 |
0.0272 | 33.8798 | 37200 | 0.8656 | 0.4759 | 0.1692 |
0.0199 | 34.2441 | 37600 | 0.9720 | 0.4588 | 0.1584 |
0.0198 | 34.6084 | 38000 | 0.9094 | 0.4652 | 0.1623 |
0.0216 | 34.9727 | 38400 | 0.8951 | 0.4841 | 0.1713 |
0.0167 | 35.3370 | 38800 | 0.9824 | 0.4806 | 0.1663 |
0.0174 | 35.7013 | 39200 | 0.9770 | 0.4936 | 0.1716 |
0.0198 | 36.0656 | 39600 | 0.9284 | 0.4749 | 0.1644 |
0.0153 | 36.4299 | 40000 | 1.0008 | 0.4796 | 0.1697 |
0.015 | 36.7942 | 40400 | 1.1019 | 0.4770 | 0.1641 |
0.0145 | 37.1585 | 40800 | 1.0591 | 0.4663 | 0.1605 |
0.0119 | 37.5228 | 41200 | 1.0535 | 0.4581 | 0.1607 |
0.0121 | 37.8871 | 41600 | 1.0635 | 0.4657 | 0.1634 |
0.0141 | 38.2514 | 42000 | 1.0896 | 0.4681 | 0.1633 |
0.0104 | 38.6157 | 42400 | 1.1029 | 0.4588 | 0.1613 |
0.0112 | 38.9800 | 42800 | 1.1009 | 0.4586 | 0.1614 |
0.0084 | 39.3443 | 43200 | 1.1865 | 0.4674 | 0.1642 |
0.009 | 39.7086 | 43600 | 1.0865 | 0.4625 | 0.1664 |
0.009 | 40.0729 | 44000 | 1.1308 | 0.4678 | 0.1620 |
0.0064 | 40.4372 | 44400 | 1.1246 | 0.4624 | 0.1645 |
0.008 | 40.8015 | 44800 | 1.1420 | 0.4481 | 0.1577 |
0.0074 | 41.1658 | 45200 | 1.1738 | 0.4543 | 0.1570 |
0.0065 | 41.5301 | 45600 | 1.1550 | 0.4598 | 0.1591 |
0.0063 | 41.8944 | 46000 | 1.1695 | 0.4582 | 0.1600 |
0.0049 | 42.2587 | 46400 | 1.2457 | 0.4456 | 0.1530 |
0.0054 | 42.6230 | 46800 | 1.2477 | 0.4554 | 0.1566 |
0.0054 | 42.9872 | 47200 | 1.2428 | 0.4483 | 0.1597 |
0.0042 | 43.3515 | 47600 | 1.2694 | 0.4598 | 0.1584 |
0.0041 | 43.7158 | 48000 | 1.3141 | 0.4463 | 0.1552 |
0.0039 | 44.0801 | 48400 | 1.3956 | 0.4463 | 0.1555 |
0.0026 | 44.4444 | 48800 | 1.3849 | 0.4437 | 0.1528 |
0.0028 | 44.8087 | 49200 | 1.4267 | 0.4565 | 0.1564 |
0.0027 | 45.1730 | 49600 | 1.4942 | 0.4479 | 0.1542 |
0.0021 | 45.5373 | 50000 | 1.4483 | 0.4451 | 0.1544 |
0.002 | 45.9016 | 50400 | 1.5475 | 0.4431 | 0.1535 |
0.0019 | 46.2659 | 50800 | 1.4928 | 0.4450 | 0.1536 |
0.0014 | 46.6302 | 51200 | 1.5448 | 0.4466 | 0.1566 |
0.0015 | 46.9945 | 51600 | 1.5942 | 0.4418 | 0.1537 |
0.0009 | 47.3588 | 52000 | 1.6472 | 0.4390 | 0.1520 |
0.0009 | 47.7231 | 52400 | 1.6661 | 0.4409 | 0.1522 |
0.0008 | 48.0874 | 52800 | 1.7172 | 0.4389 | 0.1517 |
0.0005 | 48.4517 | 53200 | 1.7628 | 0.4409 | 0.1526 |
0.0007 | 48.8160 | 53600 | 1.7515 | 0.4379 | 0.1513 |
0.0006 | 49.1803 | 54000 | 1.7836 | 0.4400 | 0.1523 |
0.0008 | 49.5446 | 54400 | 1.7794 | 0.4394 | 0.1525 |
0.0006 | 49.9089 | 54800 | 1.7814 | 0.4379 | 0.1524 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.19.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for asr-africa/w2v2_bert-Wolof-28-hours-alffa-plus-fleurs-dataset
Base model
facebook/w2v-bert-2.0