metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-CV-Fleurs-lg-50hrs-v6
results: []
wav2vec2-xls-r-300m-CV-Fleurs-lg-50hrs-v6
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5412
- Wer: 0.3807
- Cer: 0.0816
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.538 | 1.0 | 6320 | 0.7903 | 0.8894 | 0.2387 |
0.8457 | 2.0 | 12640 | 0.6261 | 0.8238 | 0.2064 |
0.6755 | 3.0 | 18960 | 0.4933 | 0.6752 | 0.1561 |
0.5729 | 4.0 | 25280 | 0.4407 | 0.5819 | 0.1323 |
0.5019 | 5.0 | 31600 | 0.4108 | 0.5538 | 0.1249 |
0.4479 | 6.0 | 37920 | 0.3908 | 0.5208 | 0.1158 |
0.4048 | 7.0 | 44240 | 0.3859 | 0.4932 | 0.1092 |
0.3658 | 8.0 | 50560 | 0.3573 | 0.4953 | 0.1105 |
0.3385 | 9.0 | 56880 | 0.3619 | 0.4860 | 0.1114 |
0.3135 | 10.0 | 63200 | 0.3545 | 0.4545 | 0.0995 |
0.2915 | 11.0 | 69520 | 0.3496 | 0.4523 | 0.0983 |
0.2721 | 12.0 | 75840 | 0.3473 | 0.4450 | 0.0982 |
0.2542 | 13.0 | 82160 | 0.3510 | 0.4327 | 0.0946 |
0.2379 | 14.0 | 88480 | 0.3679 | 0.4626 | 0.1020 |
0.2256 | 15.0 | 94800 | 0.3609 | 0.4410 | 0.0961 |
0.2114 | 16.0 | 101120 | 0.3616 | 0.4352 | 0.0947 |
0.2003 | 17.0 | 107440 | 0.3667 | 0.4333 | 0.0943 |
0.1897 | 18.0 | 113760 | 0.3805 | 0.4265 | 0.0926 |
0.1802 | 19.0 | 120080 | 0.3965 | 0.4197 | 0.0917 |
0.1704 | 20.0 | 126400 | 0.3803 | 0.4157 | 0.0903 |
0.1641 | 21.0 | 132720 | 0.3857 | 0.4298 | 0.0922 |
0.1559 | 22.0 | 139040 | 0.4016 | 0.4254 | 0.0925 |
0.1499 | 23.0 | 145360 | 0.4059 | 0.4133 | 0.0884 |
0.1434 | 24.0 | 151680 | 0.4082 | 0.4325 | 0.0915 |
0.138 | 25.0 | 158000 | 0.4483 | 0.4037 | 0.0888 |
0.1319 | 26.0 | 164320 | 0.4477 | 0.4197 | 0.0908 |
0.1294 | 27.0 | 170640 | 0.4377 | 0.4051 | 0.0880 |
0.1244 | 28.0 | 176960 | 0.4568 | 0.4252 | 0.0913 |
0.1206 | 29.0 | 183280 | 0.4550 | 0.4035 | 0.0872 |
0.1166 | 30.0 | 189600 | 0.4668 | 0.4074 | 0.0871 |
0.1118 | 31.0 | 195920 | 0.4386 | 0.3967 | 0.0867 |
0.1103 | 32.0 | 202240 | 0.4678 | 0.3915 | 0.0857 |
0.1077 | 33.0 | 208560 | 0.4852 | 0.3912 | 0.0852 |
0.1032 | 34.0 | 214880 | 0.4849 | 0.4003 | 0.0860 |
0.0993 | 35.0 | 221200 | 0.4955 | 0.3939 | 0.0841 |
0.0966 | 36.0 | 227520 | 0.4865 | 0.4001 | 0.0854 |
0.0945 | 37.0 | 233840 | 0.4700 | 0.3886 | 0.0843 |
0.0925 | 38.0 | 240160 | 0.4969 | 0.3801 | 0.0828 |
0.0898 | 39.0 | 246480 | 0.5060 | 0.3903 | 0.0837 |
0.0887 | 40.0 | 252800 | 0.5066 | 0.3910 | 0.0852 |
0.087 | 41.0 | 259120 | 0.4886 | 0.3827 | 0.0823 |
0.085 | 42.0 | 265440 | 0.5144 | 0.3899 | 0.0844 |
0.0825 | 43.0 | 271760 | 0.5123 | 0.3875 | 0.0838 |
0.0808 | 44.0 | 278080 | 0.5245 | 0.3820 | 0.0824 |
0.0791 | 45.0 | 284400 | 0.5231 | 0.3844 | 0.0822 |
0.0773 | 46.0 | 290720 | 0.5196 | 0.3867 | 0.0825 |
0.075 | 47.0 | 297040 | 0.5462 | 0.3839 | 0.0826 |
0.0737 | 48.0 | 303360 | 0.5412 | 0.3807 | 0.0816 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.1