Swahili-new
Collection
17 items
•
Updated
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
5.8088 | 0.9993 | 752 | 1.5829 | 0.9976 | 0.5075 |
2.8319 | 2.0 | 1505 | 1.1351 | 0.8587 | 0.2839 |
2.2211 | 2.9993 | 2257 | 0.9053 | 0.7716 | 0.2313 |
1.8858 | 4.0 | 3010 | 0.8276 | 0.6929 | 0.2025 |
1.6621 | 4.9993 | 3762 | 0.7863 | 0.6353 | 0.1842 |
1.4776 | 6.0 | 4515 | 0.7335 | 0.5902 | 0.1687 |
1.33 | 6.9993 | 5267 | 0.7035 | 0.5585 | 0.1592 |
1.1967 | 8.0 | 6020 | 0.6806 | 0.5353 | 0.1533 |
1.0763 | 8.9993 | 6772 | 0.6649 | 0.5126 | 0.1482 |
0.9834 | 10.0 | 7525 | 0.6615 | 0.4852 | 0.1400 |
0.9072 | 10.9993 | 8277 | 0.6760 | 0.4776 | 0.1374 |
0.8453 | 12.0 | 9030 | 0.6869 | 0.4568 | 0.1311 |
0.7749 | 12.9993 | 9782 | 0.6667 | 0.4582 | 0.1339 |
0.7246 | 14.0 | 10535 | 0.6778 | 0.4384 | 0.1290 |
0.6844 | 14.9993 | 11287 | 0.6678 | 0.4239 | 0.1225 |
0.6404 | 16.0 | 12040 | 0.6619 | 0.4218 | 0.1229 |
0.5983 | 16.9993 | 12792 | 0.7178 | 0.4176 | 0.1223 |
0.5783 | 18.0 | 13545 | 0.7103 | 0.4068 | 0.1172 |
0.5414 | 18.9993 | 14297 | 0.7358 | 0.4018 | 0.1166 |
0.5223 | 20.0 | 15050 | 0.7178 | 0.4028 | 0.1148 |
0.5012 | 20.9993 | 15802 | 0.7341 | 0.3924 | 0.1153 |
0.4729 | 22.0 | 16555 | 0.7488 | 0.3965 | 0.1145 |
0.4672 | 22.9993 | 17307 | 0.7782 | 0.3830 | 0.1115 |
0.4397 | 24.0 | 18060 | 0.7940 | 0.3715 | 0.1078 |
0.4339 | 24.9993 | 18812 | 0.7789 | 0.3830 | 0.1108 |
0.4164 | 26.0 | 19565 | 0.7889 | 0.3904 | 0.1130 |
0.4085 | 26.9993 | 20317 | 0.7793 | 0.3794 | 0.1101 |
0.3883 | 28.0 | 21070 | 0.7890 | 0.3680 | 0.1073 |
0.383 | 28.9993 | 21822 | 0.8251 | 0.3691 | 0.1076 |
0.3676 | 30.0 | 22575 | 0.8064 | 0.3675 | 0.1075 |
0.3531 | 30.9993 | 23327 | 0.8620 | 0.3669 | 0.1084 |
0.3391 | 32.0 | 24080 | 0.8385 | 0.3597 | 0.1060 |
0.3358 | 32.9993 | 24832 | 0.8355 | 0.3609 | 0.1075 |
0.3284 | 34.0 | 25585 | 0.8700 | 0.3704 | 0.1089 |
0.3189 | 34.9993 | 26337 | 0.8719 | 0.3628 | 0.1080 |
0.3086 | 36.0 | 27090 | 0.8334 | 0.3629 | 0.1055 |
0.3084 | 36.9993 | 27842 | 0.8646 | 0.3496 | 0.1036 |
0.2911 | 38.0 | 28595 | 0.8664 | 0.3560 | 0.1044 |
0.2887 | 38.9993 | 29347 | 0.9033 | 0.3467 | 0.1019 |
0.279 | 40.0 | 30100 | 0.8944 | 0.3500 | 0.1031 |
0.277 | 40.9993 | 30852 | 0.8604 | 0.3503 | 0.1029 |
0.2643 | 42.0 | 31605 | 0.8859 | 0.3459 | 0.1023 |
0.2623 | 42.9993 | 32357 | 0.9263 | 0.3394 | 0.1003 |
0.2558 | 44.0 | 33110 | 0.9256 | 0.3387 | 0.1000 |
0.2527 | 44.9993 | 33862 | 0.9429 | 0.3370 | 0.1000 |
0.2439 | 46.0 | 34615 | 0.9764 | 0.3383 | 0.1001 |
0.2377 | 46.9993 | 35367 | 0.9389 | 0.3330 | 0.0983 |
0.2434 | 48.0 | 36120 | 0.9903 | 0.3325 | 0.0986 |
0.2271 | 48.9993 | 36872 | 0.9591 | 0.3305 | 0.0986 |
0.2219 | 50.0 | 37625 | 0.9128 | 0.3310 | 0.0981 |
0.2176 | 50.9993 | 38377 | 0.9322 | 0.3310 | 0.0978 |
0.2174 | 52.0 | 39130 | 0.9558 | 0.3282 | 0.0967 |
0.2205 | 52.9993 | 39882 | 0.9752 | 0.3281 | 0.0972 |
0.2011 | 54.0 | 40635 | 1.0161 | 0.3296 | 0.0974 |
0.2027 | 54.9993 | 41387 | 1.0044 | 0.3231 | 0.0957 |
0.2007 | 56.0 | 42140 | 0.9645 | 0.3203 | 0.0955 |
0.1958 | 56.9993 | 42892 | 1.0168 | 0.3202 | 0.0953 |
0.1908 | 58.0 | 43645 | 1.0060 | 0.3241 | 0.0960 |
0.1874 | 58.9993 | 44397 | 0.9889 | 0.3209 | 0.0953 |
0.1832 | 60.0 | 45150 | 0.9944 | 0.3218 | 0.0951 |
0.1835 | 60.9993 | 45902 | 1.0524 | 0.3195 | 0.0948 |
0.1821 | 62.0 | 46655 | 1.0135 | 0.3189 | 0.0946 |
0.1746 | 62.9993 | 47407 | 0.9728 | 0.3158 | 0.0931 |
0.1714 | 64.0 | 48160 | 1.0200 | 0.3128 | 0.0931 |
0.1677 | 64.9993 | 48912 | 0.9743 | 0.3123 | 0.0928 |
0.1654 | 66.0 | 49665 | 1.0243 | 0.3137 | 0.0931 |
0.1649 | 66.9993 | 50417 | 1.0631 | 0.3149 | 0.0939 |
0.1574 | 68.0 | 51170 | 1.0807 | 0.3139 | 0.0935 |
0.155 | 68.9993 | 51922 | 1.0730 | 0.3100 | 0.0919 |
0.1576 | 70.0 | 52675 | 1.0481 | 0.3111 | 0.0927 |
0.1529 | 70.9993 | 53427 | 1.0492 | 0.3092 | 0.0920 |
0.1518 | 72.0 | 54180 | 1.0321 | 0.3062 | 0.0916 |
0.1455 | 72.9993 | 54932 | 1.0690 | 0.3032 | 0.0914 |
0.1428 | 74.0 | 55685 | 1.0508 | 0.3003 | 0.0903 |
0.1399 | 74.9993 | 56437 | 1.0759 | 0.3050 | 0.0910 |
0.1384 | 76.0 | 57190 | 1.0915 | 0.2993 | 0.0906 |
0.1348 | 76.9993 | 57942 | 1.1089 | 0.3015 | 0.0903 |
0.1346 | 78.0 | 58695 | 1.1002 | 0.3024 | 0.0902 |
0.1302 | 78.9993 | 59447 | 1.0900 | 0.3004 | 0.0897 |
0.1294 | 80.0 | 60200 | 1.0783 | 0.2995 | 0.0891 |
0.1266 | 80.9993 | 60952 | 1.0696 | 0.2966 | 0.0884 |
0.121 | 82.0 | 61705 | 1.1130 | 0.2957 | 0.0881 |
0.1212 | 82.9993 | 62457 | 1.0869 | 0.2960 | 0.0888 |
0.1203 | 84.0 | 63210 | 1.1091 | 0.2921 | 0.0882 |
0.1173 | 84.9993 | 63962 | 1.1155 | 0.2943 | 0.0885 |
0.1148 | 86.0 | 64715 | 1.1247 | 0.2954 | 0.0884 |
0.1122 | 86.9993 | 65467 | 1.1156 | 0.2942 | 0.0879 |
0.1215 | 88.0 | 66220 | 1.1048 | 0.2948 | 0.0880 |
0.1143 | 88.9993 | 66972 | 1.1065 | 0.2946 | 0.0879 |
0.1114 | 90.0 | 67725 | 1.1122 | 0.2919 | 0.0875 |
0.1067 | 90.9993 | 68477 | 1.1245 | 0.2938 | 0.0878 |
0.1056 | 92.0 | 69230 | 1.1245 | 0.2918 | 0.0872 |
0.1084 | 92.9993 | 69982 | 1.1358 | 0.2899 | 0.0870 |
0.104 | 94.0 | 70735 | 1.1432 | 0.2882 | 0.0867 |
0.1019 | 94.9993 | 71487 | 1.1435 | 0.2877 | 0.0862 |
0.0993 | 96.0 | 72240 | 1.1500 | 0.2870 | 0.0860 |
0.1012 | 96.9993 | 72992 | 1.1342 | 0.2855 | 0.0859 |
0.1023 | 98.0 | 73745 | 1.1397 | 0.2855 | 0.0859 |
0.0962 | 98.9993 | 74497 | 1.1491 | 0.2855 | 0.0859 |
0.0954 | 99.9336 | 75200 | 1.1489 | 0.2863 | 0.0861 |
Base model
facebook/wav2vec2-xls-r-300m