metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-100hrs-v2
results: []
wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-100hrs-v2
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3710
- Wer: 0.1939
- Cer: 0.0632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.0206 | 1.0 | 5760 | 0.6687 | 0.4122 | 0.1239 |
0.8506 | 2.0 | 11520 | 0.4709 | 0.3106 | 0.0945 |
0.7012 | 3.0 | 17280 | 0.3870 | 0.3028 | 0.0920 |
0.6373 | 4.0 | 23040 | 0.3576 | 0.2734 | 0.0826 |
0.598 | 5.0 | 28800 | 0.3538 | 0.2662 | 0.0814 |
0.5728 | 6.0 | 34560 | 0.3209 | 0.2538 | 0.0781 |
0.5507 | 7.0 | 40320 | 0.3151 | 0.2467 | 0.0751 |
0.5327 | 8.0 | 46080 | 0.3041 | 0.2341 | 0.0727 |
0.517 | 9.0 | 51840 | 0.3150 | 0.2384 | 0.0736 |
0.5056 | 10.0 | 57600 | 0.3031 | 0.2215 | 0.0697 |
0.4968 | 11.0 | 63360 | 0.2960 | 0.2184 | 0.0684 |
0.4829 | 12.0 | 69120 | 0.3008 | 0.2166 | 0.0679 |
0.4736 | 13.0 | 74880 | 0.2885 | 0.2153 | 0.0667 |
0.4628 | 14.0 | 80640 | 0.3040 | 0.2144 | 0.0669 |
0.4556 | 15.0 | 86400 | 0.2832 | 0.2049 | 0.0638 |
0.4435 | 16.0 | 92160 | 0.3059 | 0.2063 | 0.0646 |
0.4358 | 17.0 | 97920 | 0.2956 | 0.2079 | 0.0658 |
0.4244 | 18.0 | 103680 | 0.2960 | 0.2019 | 0.0628 |
0.4137 | 19.0 | 109440 | 0.2882 | 0.2066 | 0.0655 |
0.4054 | 20.0 | 115200 | 0.2945 | 0.2033 | 0.0658 |
0.3997 | 21.0 | 120960 | 0.2998 | 0.2061 | 0.0657 |
0.3897 | 22.0 | 126720 | 0.2866 | 0.2025 | 0.0669 |
0.3779 | 23.0 | 132480 | 0.3029 | 0.2013 | 0.0685 |
0.3686 | 24.0 | 138240 | 0.3168 | 0.1965 | 0.0632 |
0.3619 | 25.0 | 144000 | 0.3174 | 0.1972 | 0.0648 |
0.3549 | 26.0 | 149760 | 0.3099 | 0.1994 | 0.0656 |
0.3483 | 27.0 | 155520 | 0.3107 | 0.2015 | 0.0694 |
0.3401 | 28.0 | 161280 | 0.3254 | 0.1934 | 0.0626 |
0.3319 | 29.0 | 167040 | 0.3291 | 0.1990 | 0.0663 |
0.3268 | 30.0 | 172800 | 0.3275 | 0.1941 | 0.0656 |
0.3209 | 31.0 | 178560 | 0.3213 | 0.2037 | 0.0700 |
0.3157 | 32.0 | 184320 | 0.3189 | 0.1994 | 0.0675 |
0.3103 | 33.0 | 190080 | 0.3433 | 0.1952 | 0.0618 |
0.3063 | 34.0 | 195840 | 0.3200 | 0.1934 | 0.0629 |
0.3009 | 35.0 | 201600 | 0.3270 | 0.1940 | 0.0655 |
0.2966 | 36.0 | 207360 | 0.3395 | 0.1926 | 0.0628 |
0.2921 | 37.0 | 213120 | 0.3619 | 0.1893 | 0.0612 |
0.2893 | 38.0 | 218880 | 0.3535 | 0.1923 | 0.0642 |
0.285 | 39.0 | 224640 | 0.3570 | 0.1942 | 0.0649 |
0.2796 | 40.0 | 230400 | 0.3634 | 0.1890 | 0.0612 |
0.2759 | 41.0 | 236160 | 0.3369 | 0.1995 | 0.0669 |
0.2743 | 42.0 | 241920 | 0.3605 | 0.1945 | 0.0655 |
0.27 | 43.0 | 247680 | 0.3838 | 0.1902 | 0.0627 |
0.2676 | 44.0 | 253440 | 0.3750 | 0.1895 | 0.0628 |
0.2643 | 45.0 | 259200 | 0.3672 | 0.1917 | 0.0637 |
0.2603 | 46.0 | 264960 | 0.3717 | 0.1922 | 0.0641 |
0.2555 | 47.0 | 270720 | 0.3710 | 0.1939 | 0.0632 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.1