metadata
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- fleurs
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-Wolof-20-hours-alffa-plus-fleurs-dataset
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: fleurs
type: fleurs
config: wo_sn
split: None
args: wo_sn
metrics:
- type: wer
value: 0.423307335820052
name: Wer
wav2vec2-xls-r-Wolof-20-hours-alffa-plus-fleurs-dataset
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.2175
- Wer: 0.4233
- Cer: 0.1476
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.7783 | 1.2365 | 400 | 1.5400 | 0.8840 | 0.3321 |
0.9198 | 2.4730 | 800 | 0.8296 | 0.6037 | 0.2088 |
0.6527 | 3.7094 | 1200 | 0.8048 | 0.5326 | 0.1865 |
0.5793 | 4.9459 | 1600 | 0.7323 | 0.5155 | 0.1849 |
0.5234 | 6.1824 | 2000 | 0.6832 | 0.5016 | 0.1782 |
0.4583 | 7.4189 | 2400 | 0.7613 | 0.4925 | 0.1770 |
0.4251 | 8.6553 | 2800 | 0.6324 | 0.4951 | 0.1750 |
0.3763 | 9.8918 | 3200 | 0.7067 | 0.4810 | 0.1697 |
0.3503 | 11.1283 | 3600 | 0.7494 | 0.5030 | 0.1767 |
0.325 | 12.3648 | 4000 | 0.6757 | 0.4997 | 0.1734 |
0.288 | 13.6012 | 4400 | 0.6880 | 0.4851 | 0.1679 |
0.2673 | 14.8377 | 4800 | 0.6832 | 0.5268 | 0.1930 |
0.2485 | 16.0742 | 5200 | 0.6879 | 0.4730 | 0.1726 |
0.2229 | 17.3107 | 5600 | 0.7245 | 0.4907 | 0.1727 |
0.2088 | 18.5471 | 6000 | 0.7458 | 0.4642 | 0.1626 |
0.1903 | 19.7836 | 6400 | 0.7750 | 0.4572 | 0.1610 |
0.1767 | 21.0201 | 6800 | 0.8254 | 0.4550 | 0.1606 |
0.1613 | 22.2566 | 7200 | 0.7481 | 0.4613 | 0.1600 |
0.1554 | 23.4930 | 7600 | 0.8343 | 0.4425 | 0.1573 |
0.1429 | 24.7295 | 8000 | 0.8984 | 0.4465 | 0.1590 |
0.1384 | 25.9660 | 8400 | 0.7643 | 0.4624 | 0.1649 |
0.1295 | 27.2025 | 8800 | 0.8534 | 0.4489 | 0.1568 |
0.1178 | 28.4389 | 9200 | 0.9115 | 0.4481 | 0.1587 |
0.1146 | 29.6754 | 9600 | 0.8835 | 0.4403 | 0.1565 |
0.1033 | 30.9119 | 10000 | 0.9292 | 0.4525 | 0.1575 |
0.0957 | 32.1484 | 10400 | 1.0917 | 0.4407 | 0.1526 |
0.0944 | 33.3849 | 10800 | 0.9554 | 0.4474 | 0.1573 |
0.0878 | 34.6213 | 11200 | 1.0647 | 0.4385 | 0.1531 |
0.0828 | 35.8578 | 11600 | 1.0365 | 0.4356 | 0.1512 |
0.0821 | 37.0943 | 12000 | 1.0613 | 0.4461 | 0.1571 |
0.0736 | 38.3308 | 12400 | 1.0852 | 0.4333 | 0.1521 |
0.0701 | 39.5672 | 12800 | 1.0551 | 0.4334 | 0.1518 |
0.0677 | 40.8037 | 13200 | 1.1009 | 0.4327 | 0.1500 |
0.0645 | 42.0402 | 13600 | 1.1279 | 0.4277 | 0.1490 |
0.0607 | 43.2767 | 14000 | 1.1581 | 0.4214 | 0.1483 |
0.0593 | 44.5131 | 14400 | 1.2038 | 0.4231 | 0.1473 |
0.0557 | 45.7496 | 14800 | 1.1791 | 0.4249 | 0.1525 |
0.0554 | 46.9861 | 15200 | 1.2012 | 0.4248 | 0.1484 |
0.0543 | 48.2226 | 15600 | 1.2087 | 0.4232 | 0.1471 |
0.0525 | 49.4590 | 16000 | 1.2175 | 0.4233 | 0.1476 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.19.1