dmusingu's picture
Upload processor
c392bfe verified
metadata
base_model: facebook/wav2vec2-xls-r-300m
datasets:
  - fleurs
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-xls-r-Wolof-20-hours-alffa-plus-fleurs-dataset
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: fleurs
          type: fleurs
          config: wo_sn
          split: None
          args: wo_sn
        metrics:
          - type: wer
            value: 0.423307335820052
            name: Wer

Visualize in Weights & Biases Visualize in Weights & Biases

wav2vec2-xls-r-Wolof-20-hours-alffa-plus-fleurs-dataset

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2175
  • Wer: 0.4233
  • Cer: 0.1476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.7783 1.2365 400 1.5400 0.8840 0.3321
0.9198 2.4730 800 0.8296 0.6037 0.2088
0.6527 3.7094 1200 0.8048 0.5326 0.1865
0.5793 4.9459 1600 0.7323 0.5155 0.1849
0.5234 6.1824 2000 0.6832 0.5016 0.1782
0.4583 7.4189 2400 0.7613 0.4925 0.1770
0.4251 8.6553 2800 0.6324 0.4951 0.1750
0.3763 9.8918 3200 0.7067 0.4810 0.1697
0.3503 11.1283 3600 0.7494 0.5030 0.1767
0.325 12.3648 4000 0.6757 0.4997 0.1734
0.288 13.6012 4400 0.6880 0.4851 0.1679
0.2673 14.8377 4800 0.6832 0.5268 0.1930
0.2485 16.0742 5200 0.6879 0.4730 0.1726
0.2229 17.3107 5600 0.7245 0.4907 0.1727
0.2088 18.5471 6000 0.7458 0.4642 0.1626
0.1903 19.7836 6400 0.7750 0.4572 0.1610
0.1767 21.0201 6800 0.8254 0.4550 0.1606
0.1613 22.2566 7200 0.7481 0.4613 0.1600
0.1554 23.4930 7600 0.8343 0.4425 0.1573
0.1429 24.7295 8000 0.8984 0.4465 0.1590
0.1384 25.9660 8400 0.7643 0.4624 0.1649
0.1295 27.2025 8800 0.8534 0.4489 0.1568
0.1178 28.4389 9200 0.9115 0.4481 0.1587
0.1146 29.6754 9600 0.8835 0.4403 0.1565
0.1033 30.9119 10000 0.9292 0.4525 0.1575
0.0957 32.1484 10400 1.0917 0.4407 0.1526
0.0944 33.3849 10800 0.9554 0.4474 0.1573
0.0878 34.6213 11200 1.0647 0.4385 0.1531
0.0828 35.8578 11600 1.0365 0.4356 0.1512
0.0821 37.0943 12000 1.0613 0.4461 0.1571
0.0736 38.3308 12400 1.0852 0.4333 0.1521
0.0701 39.5672 12800 1.0551 0.4334 0.1518
0.0677 40.8037 13200 1.1009 0.4327 0.1500
0.0645 42.0402 13600 1.1279 0.4277 0.1490
0.0607 43.2767 14000 1.1581 0.4214 0.1483
0.0593 44.5131 14400 1.2038 0.4231 0.1473
0.0557 45.7496 14800 1.1791 0.4249 0.1525
0.0554 46.9861 15200 1.2012 0.4248 0.1484
0.0543 48.2226 15600 1.2087 0.4232 0.1471
0.0525 49.4590 16000 1.2175 0.4233 0.1476

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.17.0
  • Tokenizers 0.19.1