You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Visualize in Weights & Biases

wav2vec2-xls-r-Wolof-20-hours-kallaama-dataset

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2814
  • Wer: 0.3377
  • Cer: 0.1667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer Cer
7.201 0.5548 200 3.5613 1.0 1.0
3.3219 1.1096 400 3.0794 1.0 1.0
3.1819 1.6644 600 3.0291 1.0 1.0
3.1057 2.2191 800 2.9537 1.0 1.0
2.7318 2.7739 1000 1.8572 0.9362 0.4899
2.0947 3.3287 1200 1.4787 0.7294 0.3568
1.8633 3.8835 1400 1.3119 0.6146 0.2935
1.7029 4.4383 1600 1.2306 0.6011 0.2828
1.6158 4.9931 1800 1.1482 0.5689 0.2747
1.5007 5.5479 2000 1.1997 0.5793 0.2849
1.4122 6.1026 2200 1.0793 0.5074 0.2387
1.3642 6.6574 2400 1.0829 0.5129 0.2411
1.3065 7.2122 2600 1.0104 0.4706 0.2218
1.2248 7.7670 2800 1.0017 0.4669 0.2178
1.2248 8.3218 3000 0.9914 0.4489 0.2121
1.1476 8.8766 3200 0.9413 0.4465 0.2140
1.1322 9.4313 3400 0.9384 0.4586 0.2195
1.0733 9.9861 3600 0.9237 0.4400 0.2089
1.0113 10.5409 3800 1.0012 0.4430 0.2150
1.0153 11.0957 4000 0.9331 0.4154 0.1976
0.9963 11.6505 4200 0.9500 0.4086 0.1984
0.9861 12.2053 4400 0.9105 0.4015 0.1923
0.9469 12.7601 4600 0.9050 0.3928 0.1879
0.936 13.3148 4800 0.9346 0.3951 0.1896
0.91 13.8696 5000 0.9387 0.4013 0.1928
0.9299 14.4244 5200 0.9697 0.4130 0.2004
0.882 14.9792 5400 0.9310 0.4155 0.1996
0.8354 15.5340 5600 1.0006 0.4064 0.1981
0.8471 16.0888 5800 0.9251 0.3829 0.1860
0.8236 16.6436 6000 0.9525 0.3801 0.1834
0.8194 17.1983 6200 0.9213 0.3772 0.1826
0.7891 17.7531 6400 0.9807 0.3718 0.1808
0.8135 18.3079 6600 0.9325 0.3809 0.1820
0.7832 18.8627 6800 0.8921 0.3859 0.1852
0.7663 19.4175 7000 0.9833 0.3939 0.1953
0.7663 19.9723 7200 0.9862 0.3834 0.1854
0.7227 20.5270 7400 1.0197 0.3758 0.1801
0.7249 21.0818 7600 0.9505 0.3671 0.1785
0.7113 21.6366 7800 0.9648 0.3672 0.1784
0.7116 22.1914 8000 0.9152 0.3709 0.1797
0.6927 22.7462 8200 0.9276 0.3636 0.1755
0.6947 23.3010 8400 0.9453 0.3734 0.1799
0.6665 23.8558 8600 0.9654 0.3677 0.1790
0.6684 24.4105 8800 1.0211 0.3761 0.1823
0.653 24.9653 9000 1.0406 0.3751 0.1796
0.6292 25.5201 9200 0.9922 0.3658 0.1792
0.6327 26.0749 9400 1.0176 0.3585 0.1756
0.6133 26.6297 9600 0.9768 0.3720 0.1801
0.6262 27.1845 9800 0.9729 0.3611 0.1756
0.596 27.7393 10000 0.9307 0.3579 0.1741
0.5914 28.2940 10200 1.0159 0.3582 0.1732
0.5767 28.8488 10400 1.0680 0.3684 0.1778
0.5615 29.4036 10600 1.0910 0.3587 0.1750
0.5531 29.9584 10800 1.0278 0.3639 0.1775
0.5467 30.5132 11000 1.0408 0.3580 0.1755
0.5372 31.0680 11200 1.0846 0.3524 0.1713
0.532 31.6227 11400 1.0610 0.3552 0.1740
0.5224 32.1775 11600 1.0826 0.3549 0.1734
0.5075 32.7323 11800 1.1042 0.3523 0.1711
0.5058 33.2871 12000 1.0994 0.3554 0.1724
0.493 33.8419 12200 1.0857 0.3516 0.1709
0.4661 34.3967 12400 1.1213 0.3507 0.1729
0.4764 34.9515 12600 1.1315 0.3491 0.1711
0.451 35.5062 12800 1.0818 0.3564 0.1745
0.4793 36.0610 13000 1.1029 0.3530 0.1731
0.4518 36.6158 13200 1.1308 0.3481 0.1709
0.4445 37.1706 13400 1.1243 0.3483 0.1718
0.4318 37.7254 13600 1.1597 0.3464 0.1705
0.4181 38.2802 13800 1.1771 0.3504 0.1709
0.4234 38.8350 14000 1.1590 0.3512 0.1714
0.402 39.3897 14200 1.2166 0.3430 0.1690
0.4118 39.9445 14400 1.2001 0.3460 0.1692
0.3908 40.4993 14600 1.1891 0.3423 0.1689
0.413 41.0541 14800 1.1905 0.3438 0.1686
0.3909 41.6089 15000 1.1846 0.3445 0.1694
0.3773 42.1637 15200 1.2198 0.3455 0.1699
0.3787 42.7184 15400 1.2136 0.3456 0.1686
0.3644 43.2732 15600 1.2274 0.3485 0.1700
0.3647 43.8280 15800 1.2453 0.3413 0.1678
0.3488 44.3828 16000 1.2309 0.3432 0.1684
0.3386 44.9376 16200 1.2498 0.3411 0.1678
0.3631 45.4924 16400 1.2552 0.3403 0.1670
0.34 46.0472 16600 1.2595 0.3418 0.1675
0.3347 46.6019 16800 1.2612 0.3419 0.1677
0.3396 47.1567 17000 1.2634 0.3394 0.1668
0.3396 47.7115 17200 1.2767 0.3384 0.1673
0.3369 48.2663 17400 1.2768 0.3389 0.1670
0.3353 48.8211 17600 1.2823 0.3383 0.1668
0.32 49.3759 17800 1.2837 0.3379 0.1668
0.3348 49.9307 18000 1.2814 0.3377 0.1667

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.17.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/wav2vec2-xls-r-Wolof-20-hours-kallaama-dataset

Finetuned
(532)
this model