metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-Wolof-28-hours-alffa-plus-fleurs-dataset
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: wo_sn
split: None
args: wo_sn
metrics:
- name: Wer
type: wer
value: 0.4408273991183452
wav2vec2-xls-r-Wolof-28-hours-alffa-plus-fleurs-dataset
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.2602
- Wer: 0.4408
- Cer: 0.1556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
7.4709 | 0.7286 | 400 | 3.3573 | 1.0 | 1.0 |
3.0751 | 1.4572 | 800 | 3.2424 | 1.0 | 1.0 |
2.3348 | 2.1858 | 1200 | 1.1856 | 0.8107 | 0.2961 |
0.7384 | 2.9144 | 1600 | 0.9239 | 0.6241 | 0.2184 |
0.5978 | 3.6430 | 2000 | 0.7904 | 0.5831 | 0.2078 |
0.5443 | 4.3716 | 2400 | 0.7605 | 0.5613 | 0.2024 |
0.517 | 5.1002 | 2800 | 0.7471 | 0.5778 | 0.2085 |
0.4672 | 5.8288 | 3200 | 0.7260 | 0.5458 | 0.1966 |
0.4348 | 6.5574 | 3600 | 0.7106 | 0.5102 | 0.1839 |
0.4117 | 7.2860 | 4000 | 0.6811 | 0.5134 | 0.1873 |
0.3845 | 8.0146 | 4400 | 0.6847 | 0.5192 | 0.1877 |
0.3617 | 8.7432 | 4800 | 0.6870 | 0.5747 | 0.2167 |
0.3395 | 9.4718 | 5200 | 0.6642 | 0.5366 | 0.1938 |
0.323 | 10.2004 | 5600 | 0.6752 | 0.5127 | 0.1880 |
0.309 | 10.9290 | 6000 | 0.6696 | 0.5075 | 0.1838 |
0.2853 | 11.6576 | 6400 | 0.7383 | 0.5071 | 0.1852 |
0.2652 | 12.3862 | 6800 | 0.6571 | 0.5063 | 0.1834 |
0.2557 | 13.1148 | 7200 | 0.6866 | 0.4921 | 0.1791 |
0.2443 | 13.8434 | 7600 | 0.6916 | 0.4945 | 0.1800 |
0.224 | 14.5719 | 8000 | 0.6833 | 0.5365 | 0.1904 |
0.2202 | 15.3005 | 8400 | 0.6920 | 0.5205 | 0.1886 |
0.2117 | 16.0291 | 8800 | 0.7279 | 0.5241 | 0.1881 |
0.1932 | 16.7577 | 9200 | 0.6772 | 0.5071 | 0.1837 |
0.1874 | 17.4863 | 9600 | 0.7134 | 0.4961 | 0.1769 |
0.1733 | 18.2149 | 10000 | 0.7350 | 0.5096 | 0.1849 |
0.1705 | 18.9435 | 10400 | 0.7188 | 0.5021 | 0.1808 |
0.1631 | 19.6721 | 10800 | 0.7608 | 0.5126 | 0.1861 |
0.1518 | 20.4007 | 11200 | 0.7117 | 0.4884 | 0.1760 |
0.147 | 21.1293 | 11600 | 0.7853 | 0.4754 | 0.1698 |
0.1421 | 21.8579 | 12000 | 0.8173 | 0.4717 | 0.1682 |
0.1365 | 22.5865 | 12400 | 0.7970 | 0.4797 | 0.1734 |
0.1328 | 23.3151 | 12800 | 0.8331 | 0.4799 | 0.1752 |
0.1273 | 24.0437 | 13200 | 0.7806 | 0.4729 | 0.1713 |
0.1202 | 24.7723 | 13600 | 0.8037 | 0.4704 | 0.1666 |
0.1185 | 25.5009 | 14000 | 0.8201 | 0.4650 | 0.1690 |
0.1119 | 26.2295 | 14400 | 0.9294 | 0.4774 | 0.1720 |
0.1087 | 26.9581 | 14800 | 0.8380 | 0.4718 | 0.1697 |
0.1043 | 27.6867 | 15200 | 0.9948 | 0.4677 | 0.1670 |
0.1034 | 28.4153 | 15600 | 0.9864 | 0.4707 | 0.1689 |
0.0979 | 29.1439 | 16000 | 1.0066 | 0.4694 | 0.1704 |
0.0947 | 29.8725 | 16400 | 0.8745 | 0.4802 | 0.1709 |
0.0876 | 30.6011 | 16800 | 0.9511 | 0.4910 | 0.1750 |
0.0857 | 31.3297 | 17200 | 0.9594 | 0.4525 | 0.1625 |
0.0842 | 32.0583 | 17600 | 1.0274 | 0.4681 | 0.1662 |
0.08 | 32.7869 | 18000 | 0.9747 | 0.4623 | 0.1647 |
0.08 | 33.5155 | 18400 | 0.9912 | 0.4676 | 0.1640 |
0.077 | 34.2441 | 18800 | 1.1352 | 0.4629 | 0.1634 |
0.0753 | 34.9727 | 19200 | 1.0100 | 0.4542 | 0.1614 |
0.0712 | 35.7013 | 19600 | 1.0493 | 0.4554 | 0.1605 |
0.0679 | 36.4299 | 20000 | 1.1336 | 0.4528 | 0.1620 |
0.0664 | 37.1585 | 20400 | 1.1095 | 0.4496 | 0.1599 |
0.0679 | 37.8871 | 20800 | 1.0197 | 0.4576 | 0.1621 |
0.0615 | 38.6157 | 21200 | 1.1053 | 0.4567 | 0.1606 |
0.0588 | 39.3443 | 21600 | 1.1809 | 0.4469 | 0.1594 |
0.0594 | 40.0729 | 22000 | 1.1607 | 0.4538 | 0.1619 |
0.0566 | 40.8015 | 22400 | 1.1570 | 0.4498 | 0.1586 |
0.0567 | 41.5301 | 22800 | 1.1453 | 0.4505 | 0.1590 |
0.0554 | 42.2587 | 23200 | 1.1740 | 0.4563 | 0.1586 |
0.0524 | 42.9872 | 23600 | 1.1408 | 0.4557 | 0.1598 |
0.0504 | 43.7158 | 24000 | 1.1360 | 0.4511 | 0.1587 |
0.0492 | 44.4444 | 24400 | 1.2167 | 0.4487 | 0.1576 |
0.0505 | 45.1730 | 24800 | 1.1709 | 0.4442 | 0.1571 |
0.0479 | 45.9016 | 25200 | 1.2109 | 0.4443 | 0.1569 |
0.047 | 46.6302 | 25600 | 1.2031 | 0.4430 | 0.1555 |
0.0454 | 47.3588 | 26000 | 1.2316 | 0.4401 | 0.1555 |
0.0442 | 48.0874 | 26400 | 1.2515 | 0.4390 | 0.1554 |
0.0445 | 48.8160 | 26800 | 1.2538 | 0.4409 | 0.1554 |
0.041 | 49.5446 | 27200 | 1.2602 | 0.4408 | 0.1556 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.19.1