Bemba
Collection
Experimental automatic speech recognition models developed for the Bemba language
•
32 items
•
Updated
This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
1.1298 | 1.0 | 1281 | 0.8440 | 0.0092 | 0.5704 | 0.1924 |
0.6239 | 2.0 | 2562 | 0.7778 | 0.0092 | 0.5489 | 0.1840 |
0.4117 | 3.0 | 3843 | 0.7974 | 0.0092 | 0.5208 | 0.1680 |
0.2409 | 4.0 | 5124 | 0.8600 | 0.0092 | 0.5432 | 0.1883 |
0.1249 | 5.0 | 6405 | 0.9344 | 0.0092 | 0.5202 | 0.1696 |
0.0619 | 6.0 | 7686 | 1.0230 | 0.0092 | 0.5079 | 0.1667 |
0.0349 | 7.0 | 8967 | 1.0739 | 0.0092 | 0.5135 | 0.1649 |
0.0232 | 8.0 | 10248 | 1.1178 | 0.0092 | 0.5039 | 0.1673 |
0.0173 | 9.0 | 11529 | 1.1459 | 0.0092 | 0.5154 | 0.1670 |
0.0139 | 10.0 | 12810 | 1.2013 | 0.0092 | 0.5139 | 0.1672 |
0.0124 | 11.0 | 14091 | 1.2302 | 0.0092 | 0.5133 | 0.1658 |
0.011 | 12.0 | 15372 | 1.2629 | 0.0092 | 0.5142 | 0.1732 |
0.0084 | 13.0 | 16653 | 1.3002 | 0.0092 | 0.5135 | 0.1650 |
0.0075 | 14.0 | 17934 | 1.3475 | 0.0092 | 0.4972 | 0.1629 |
0.0081 | 15.0 | 19215 | 1.3522 | 0.0092 | 0.4931 | 0.1618 |
0.0077 | 16.0 | 20496 | 1.3592 | 0.0092 | 0.5087 | 0.1623 |
0.0073 | 17.0 | 21777 | 1.3655 | 0.0092 | 0.5067 | 0.1662 |
0.0061 | 18.0 | 23058 | 1.3930 | 0.0092 | 0.5074 | 0.1669 |
0.0057 | 19.0 | 24339 | 1.3912 | 0.0092 | 0.5055 | 0.1636 |
0.0065 | 20.0 | 25620 | 1.4236 | 0.0092 | 0.4995 | 0.1641 |
0.0052 | 21.0 | 26901 | 1.4587 | 0.0092 | 0.5035 | 0.1609 |
0.0044 | 22.0 | 28182 | 1.4459 | 0.0092 | 0.5034 | 0.1653 |
0.006 | 23.0 | 29463 | 1.4685 | 0.0092 | 0.5036 | 0.1684 |
0.0051 | 24.0 | 30744 | 1.4455 | 0.0092 | 0.5029 | 0.1651 |
0.0043 | 25.0 | 32025 | 1.4682 | 0.0092 | 0.5410 | 0.1875 |
Base model
openai/whisper-small