Bemba
Collection
Experimental automatic speech recognition models developed for the Bemba language
•
32 items
•
Updated
This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.3572 | 1.0 | 638 | 0.9726 | 0.6131 | 0.2029 |
0.7143 | 2.0 | 1276 | 0.8546 | 0.5769 | 0.1907 |
0.4485 | 3.0 | 1914 | 0.8472 | 0.5749 | 0.1936 |
0.2568 | 4.0 | 2552 | 0.9305 | 0.6149 | 0.1963 |
0.1328 | 5.0 | 3190 | 0.9798 | 0.5448 | 0.1658 |
0.0678 | 6.0 | 3828 | 1.0441 | 0.5373 | 0.1647 |
0.0366 | 7.0 | 4466 | 1.1153 | 0.5366 | 0.1719 |
0.0223 | 8.0 | 5104 | 1.1549 | 0.5441 | 0.1626 |
0.0169 | 9.0 | 5742 | 1.2010 | 0.5364 | 0.1698 |
0.0122 | 10.0 | 6380 | 1.2321 | 0.5384 | 0.1560 |
0.0098 | 11.0 | 7018 | 1.2646 | 0.5202 | 0.1522 |
0.0092 | 12.0 | 7656 | 1.2855 | 0.5279 | 0.1570 |
0.0085 | 13.0 | 8294 | 1.3001 | 0.5218 | 0.1568 |
0.0094 | 14.0 | 8932 | 1.3090 | 0.5240 | 0.1573 |
0.008 | 15.0 | 9570 | 1.3016 | 0.5220 | 0.1524 |
0.0064 | 16.0 | 10208 | 1.3748 | 0.5195 | 0.1532 |
0.0061 | 17.0 | 10846 | 1.3741 | 0.5147 | 0.1561 |
0.0072 | 18.0 | 11484 | 1.3958 | 0.5211 | 0.1560 |
0.007 | 19.0 | 12122 | 1.3849 | 0.5233 | 0.1554 |
0.0042 | 20.0 | 12760 | 1.4370 | 0.5124 | 0.1521 |
0.0046 | 21.0 | 13398 | 1.4660 | 0.5177 | 0.1529 |
0.0048 | 22.0 | 14036 | 1.4625 | 0.5115 | 0.1509 |
0.0057 | 23.0 | 14674 | 1.4502 | 0.5197 | 0.1554 |
0.005 | 24.0 | 15312 | 1.4473 | 0.5174 | 0.1568 |
0.0037 | 25.0 | 15950 | 1.4782 | 0.5258 | 0.1545 |
0.0035 | 26.0 | 16588 | 1.4798 | 0.5154 | 0.1533 |
0.0034 | 27.0 | 17226 | 1.5074 | 0.5170 | 0.1539 |
0.0042 | 28.0 | 17864 | 1.4976 | 0.5227 | 0.1572 |
0.0045 | 29.0 | 18502 | 1.5364 | 0.5110 | 0.1565 |
0.0025 | 30.0 | 19140 | 1.5072 | 0.5206 | 0.1545 |
Base model
openai/whisper-small