atsuki-yamaguchi's picture
Upload README.md with huggingface_hub
424d39e verified
---
license: llama3
language:
- te
base_model: meta-llama/Meta-Llama-3-8B
library_name: transformers
---
# Llama3 8B for Telugu: No vocabulary adaptation
This model is built on top of Llama3 8B adapted for Telugu using 30K target language sentences sampled from CC-100.
## Model Details
* **Vocabulary**: This model has no additional target vocabulary. It retains the original vocabulary of Llama3 8B.
## Model Description
- **Language:** Telugu
- **License:** Llama 3 Community License Agreement
- **Fine-tuned from model:** meta-llama/Meta-Llama-3-8B
## Model Sources
- **Repository:** https://github.com/gucci-j/lowres-cve
- **Paper:** https://arxiv.org/abs/2406.11477
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B"
)
model = PeftModelForCausalLM.from_pretrained(
model,
"atsuki-yamaguchi/Llama-3-8B-te-30K-lapt"
)
model = model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Meta-Llama-3-8B"
)
```
## Citation
```
@article{yamaguchi-etal-2024-effectively,
title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?},
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
year={2024},
journal={ArXiv},
year={2024},
volume={abs/2406.11477},
url={https://arxiv.org/abs/2406.11477},
}
```