whisper-tiny-ro / README.md
augustinjianu's picture
End of training
533fc81 verified
metadata
library_name: transformers
language:
  - ro
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny Ro (local) - Augustin Jianu
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ro
          split: test
          args: 'config: ro, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 37.48352861569144

Whisper Tiny Ro (local) - Augustin Jianu

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5978
  • Wer: 37.4835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4417 1.7730 1000 0.5327 43.8513
0.1813 3.5461 2000 0.4666 38.8689
0.0751 5.3191 3000 0.4645 36.5006
0.0326 7.0922 4000 0.4803 36.4614
0.0234 8.8652 5000 0.5087 36.5148
0.0082 10.6383 6000 0.5424 36.6252
0.0042 12.4113 7000 0.5650 37.6509
0.0029 14.1844 8000 0.5809 36.8710
0.0025 15.9574 9000 0.5922 38.1495
0.0021 17.7305 10000 0.5978 37.4835

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0