File size: 15,243 Bytes
52bb403 7c43870 81658fb 52bb403 34dd82a 9fdbe51 5aa8b74 d37cdb2 5aa8b74 d37cdb2 8658bac 5867a45 d37cdb2 8658bac 41d840a 8658bac 827f943 8658bac 827f943 d37cdb2 827f943 5aa8b74 827f943 5aa8b74 827f943 d37cdb2 827f943 d37cdb2 827f943 5aa8b74 6f917da 827f943 5aa8b74 827f943 d37cdb2 827f943 d37cdb2 827f943 d37cdb2 41d840a d37cdb2 2258802 d37cdb2 2258802 d37cdb2 41d840a d37cdb2 41d840a d37cdb2 41d840a d37cdb2 8658bac 52bb403 f23ed8f 52bb403 f23ed8f 52bb403 f23ed8f 52bb403 f23ed8f 2917b63 f23ed8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# my_custom_olmoe/modeling_custom.py
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from .configuration_densebackward_olmoe0125 import DenseBackwardOLMoEConfig
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
"""
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
前向输出依旧保持与官方相同(即稀疏计算结果),
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
输入:
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
输出:
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
"""
def forward_partscale_fixep_norm_dtch(self, hidden_states: torch.Tensor):
"""
forward_partscale_fixep_norm_dtch
"""
batch_size, seq_length, hidden_dim = hidden_states.shape
dtype = hidden_states.dtype
device = hidden_states.device
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
N_tokens = flat_hidden.size(0)
# Compute routing logic
router_logits = self.gate(flat_hidden).to(dtype=dtype) # (B*L, num_experts)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*L, num_experts)
# Select top-k experts
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
norm_ratio = routing_weights_topk.sum(dim=-1, keepdim=True)
# Normalize top-k routing weights
routing_weights_topk = routing_weights_topk / norm_ratio
# Only scale the selected top-k positions in routing_weights
mask = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1).to(dtype)
# ------------------------------------Choose Section-----------------------------------------------
# current --> partscale_fix_expert implementation
routing_weights = routing_weights * (1.0 - mask) / norm_ratio.detach() + routing_weights * mask / norm_ratio
# should be --> the gated implemenation, by comment out the line above and uncomment the two lines below
# gated = routing_weights.detach() * mask + (routing_weights - routing_weights.detach())
# routing_weights = gated / gated.sum(dim=-1, keepdim=True)
# ------------------------------------Choose Section-----------------------------------------------
routing_weights_topk = routing_weights_topk.to(dtype=dtype)
# Convert full routing_weights to consistent dtype for dense accumulation
routing_weights = routing_weights.to(dtype=dtype)
# Prepare accumulators: one for dense_outputs, one for sparse_outputs
dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
# For mapping top-k positions when accumulating sparse_outputs
# selected_experts: (N_tokens, top_k)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
# Compute current expert output for all tokens
expert_output = expert_layer(flat_hidden).to(dtype=dtype) # (N_tokens, hidden_dim)
activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
if expert_output.requires_grad:
expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
expert_output = expert_output.to(dtype=dtype)
# Dense accumulation: multiply by full routing weight and add
weight_full = routing_weights[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
dense_outputs = dense_outputs + expert_output * weight_full
# Sparse accumulation: find tokens where this expert is among top_k
# matches: Boolean mask where selected_experts == expert_idx → shape (N_tokens, top_k)
matches = (selected_experts == expert_idx)
if matches.any():
# locations: tuple of (token_indices, k_indices)
token_indices, k_indices = torch.where(matches)
# corresponding top-k weights
weights_topk = routing_weights_topk[token_indices, k_indices].unsqueeze(-1) # (num_matches, 1)
# Accumulate sparse_outputs only for matched tokens
sparse_outputs[token_indices] = sparse_outputs[token_indices] + expert_output[token_indices] * weights_topk
# Combine sparse forward output and dense backward output
final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
final_flat = final_flat.to(dtype=dtype)
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
return final_output, router_logits
# def forward(self, hidden_states: torch.Tensor):
# """
# Gate version of implementation of straight-through, π -> mask, dmask / dπ = 1
# """
# batch_size, seq_length, hidden_dim = hidden_states.shape
# dtype = hidden_states.dtype
# device = hidden_states.device
# flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
# N_tokens = flat_hidden.size(0)
# # 1) router & softmax
# router_logits = self.gate(flat_hidden).to(dtype=dtype) # (N, num_experts)
# routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (N, num_experts)
# # 2) top-K selection
# _, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) # (N, K), (N, K)
# # 3) build hard & ste masks
# mask_hard = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1).to(dtype) # (N, num_experts)
# #mask_ste = mask_hard + (routing_weights - routing_weights.detach())
# mask_ste = mask_hard + (router_logits - router_logits.detach())
# # 4) compute gated weights = π * mask, then optionally renormalize
# gated = routing_weights * mask_ste # zero-out non-TopK
# if self.norm_topk_prob:
# norm_ratio = gated.sum(dim=-1, keepdim=True) # (N,1)
# gated = gated / norm_ratio # normalized TopK
# # 5)prepare accumulators
# dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
# sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
# for expert_idx, expert_layer in enumerate(self.experts):
# expert_output = expert_layer(flat_hidden).to(dtype=dtype) # (N_tokens, hidden_dim)
# activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
# if expert_output.requires_grad:
# expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
# # a) Dense-STE backward uses gated weights
# weights = gated[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
# dense_outputs += expert_output * weights
# # b) Sparse forward -- find tokens where this expert is among top_k (active experts)
# active = (selected_experts == expert_idx)
# if active.any():
# token_indices, _ = torch.where(active)
# weights_topk = gated[token_indices, expert_idx].unsqueeze(-1) # (num_matches,1)
# sparse_outputs[token_indices] += expert_output[token_indices] * weights_topk
# # 6) STE mix: forward from sparse, backward from dense
# final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
# final_output = final_flat.view(batch_size, seq_length, hidden_dim).to(dtype=dtype)
# return final_output, router_logits
# def forward(self, hidden_states: torch.Tensor):
# batch_size, seq_length, hidden_dim = hidden_states.shape
# # 记录输入张量的数据类型,确保所有计算保持一致
# dtype = hidden_states.dtype
# device = hidden_states.device
# flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
# N_tokens = flat_hidden.size(0)
# # 计算路由逻辑
# router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
# # 确保router_logits和flat_hidden数据类型一致
# router_logits = router_logits.to(dtype=dtype)
# routing_weights = F.softmax(router_logits, dim=1, dtype=dtype) # (B*seq_len, num_experts)
# # 选择top-k专家
# routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# if self.norm_topk_prob:
# routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
# # 确保归一化后类型一致
# routing_weights_topk = routing_weights_topk.to(dtype=dtype)
# # ---------- 真实计算所有专家输出(密集计算)----------
# all_expert_outputs = torch.zeros((N_tokens, self.num_experts, hidden_dim),
# dtype=dtype, device=device)
# for expert_idx in range(self.num_experts):
# expert_layer = self.experts[expert_idx]
# # 对所有token都计算当前专家的输出
# expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
# # 计算当前expert的激活mask,只有激活token梯度被保留
# activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
# # 注册梯度hook,使得非激活token的梯度被置零
# if expert_output.requires_grad:
# expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
# # 确保专家输出与预期类型一致
# expert_output = expert_output.to(dtype=dtype)
# all_expert_outputs[:, expert_idx, :] = expert_output
# # ---------- 提取激活专家输出(稀疏前向)- 使用张量批处理 ----------
# # 创建索引张量,第一维是token索引,第二维是专家索引
# token_indices = torch.arange(N_tokens, device=device).unsqueeze(1).expand(-1, self.top_k)
# batch_indices = token_indices.reshape(-1)
# expert_indices = selected_experts.reshape(-1)
# # 批量提取激活专家的输出
# selected_outputs = all_expert_outputs[batch_indices, expert_indices].view(N_tokens, self.top_k, hidden_dim)
# # 扩展权重以便批量相乘
# expanded_weights = routing_weights_topk.unsqueeze(-1) # (N_tokens, top_k, 1)
# expanded_weights = expanded_weights.to(dtype=dtype)
# # 权重乘以专家输出并求和
# sparse_output = (selected_outputs * expanded_weights).sum(dim=1) # (N_tokens, hidden_dim)
# # ---------- 密集计算聚合(用于反向传播)----------
# # 使用所有专家的输出和路由权重计算密集输出
# routing_weights_expanded = routing_weights.unsqueeze(-1) # (N_tokens, num_experts, 1)
# routing_weights_expanded = routing_weights_expanded.to(dtype=dtype)
# dense_outputs = (all_expert_outputs * routing_weights_expanded).sum(dim=1) # (N_tokens, hidden_dim)
# # ---------- 组合稀疏前向和密集反向 ----------
# # sparse_output.detach()保留稀疏前向计算图
# # (dense_outputs - dense_outputs.detach())只保留密集反向梯度
# final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
# final_flat = final_flat.to(dtype=dtype) # 确保最终输出类型一致
# final_output = final_flat.view(batch_size, seq_length, hidden_dim)
# return final_output, router_logits
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
"""
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
以实现 dense backward 功能。
配置类:DenseBackwardOLMoEConfig
"""
config_class = DenseBackwardOLMoEConfig
base_model_prefix = "olmoe"
def __init__(self, config):
# 首先调用父类初始化方法
super().__init__(config)
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
# 复制预训练模型的状态到当前模型
self.config = pretrained_model.config
self.model = pretrained_model.model
self.vocab_size = pretrained_model.vocab_size
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
self.num_experts = pretrained_model.num_experts
self.lm_head = pretrained_model.lm_head
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
# 且每层中 mlp 模块包含属性 sparse_moe_block。
for layer in self.model.layers:
if hasattr(layer.mlp, "gate"):
print("111")
orig_block = layer.mlp
# 通过直接复制原版属性创建新的块
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
# 然后手动复制需要共享的属性:
new_block.gate = orig_block.gate
new_block.experts = orig_block.experts
new_block.num_experts = orig_block.num_experts
new_block.top_k = orig_block.top_k
new_block.norm_topk_prob = orig_block.norm_topk_prob
layer.mlp = new_block
print(type(layer.mlp))
# 释放预训练模型内存
del pretrained_model
import gc
gc.collect()
torch.cuda.empty_cache()
print("原始预训练模型已释放")
def main():
config = DenseBackwardOLMoEConfig( # 官方模型参数
model_marker="DenseBackward_olmoe_marker",
)
# 创建自定义模型实例
model = DenseBackwardOLMoEForCausalLM(config)
print(type(model))
print(type(model.model))
print(type(model.model.layers[0]))
print(type(model.model.layers[0].mlp))
print(type(model.model.layers[0].mlp.experts))
if __name__ == "__main__":
main() |