olmoe_densebackward0125 / modeling_densebackward_olmoe0125.py
autoprogrammer's picture
Update modeling_densebackward_olmoe0125.py
5aa8b74 verified
# my_custom_olmoe/modeling_custom.py
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from .configuration_densebackward_olmoe0125 import DenseBackwardOLMoEConfig
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
"""
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
前向输出依旧保持与官方相同(即稀疏计算结果),
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
输入:
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
输出:
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
"""
def forward_partscale_fixep_norm_dtch(self, hidden_states: torch.Tensor):
"""
forward_partscale_fixep_norm_dtch
"""
batch_size, seq_length, hidden_dim = hidden_states.shape
dtype = hidden_states.dtype
device = hidden_states.device
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
N_tokens = flat_hidden.size(0)
# Compute routing logic
router_logits = self.gate(flat_hidden).to(dtype=dtype) # (B*L, num_experts)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*L, num_experts)
# Select top-k experts
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
norm_ratio = routing_weights_topk.sum(dim=-1, keepdim=True)
# Normalize top-k routing weights
routing_weights_topk = routing_weights_topk / norm_ratio
# Only scale the selected top-k positions in routing_weights
mask = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1).to(dtype)
# ------------------------------------Choose Section-----------------------------------------------
# current --> partscale_fix_expert implementation
routing_weights = routing_weights * (1.0 - mask) / norm_ratio.detach() + routing_weights * mask / norm_ratio
# should be --> the gated implemenation, by comment out the line above and uncomment the two lines below
# gated = routing_weights.detach() * mask + (routing_weights - routing_weights.detach())
# routing_weights = gated / gated.sum(dim=-1, keepdim=True)
# ------------------------------------Choose Section-----------------------------------------------
routing_weights_topk = routing_weights_topk.to(dtype=dtype)
# Convert full routing_weights to consistent dtype for dense accumulation
routing_weights = routing_weights.to(dtype=dtype)
# Prepare accumulators: one for dense_outputs, one for sparse_outputs
dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
# For mapping top-k positions when accumulating sparse_outputs
# selected_experts: (N_tokens, top_k)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
# Compute current expert output for all tokens
expert_output = expert_layer(flat_hidden).to(dtype=dtype) # (N_tokens, hidden_dim)
activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
if expert_output.requires_grad:
expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
expert_output = expert_output.to(dtype=dtype)
# Dense accumulation: multiply by full routing weight and add
weight_full = routing_weights[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
dense_outputs = dense_outputs + expert_output * weight_full
# Sparse accumulation: find tokens where this expert is among top_k
# matches: Boolean mask where selected_experts == expert_idx → shape (N_tokens, top_k)
matches = (selected_experts == expert_idx)
if matches.any():
# locations: tuple of (token_indices, k_indices)
token_indices, k_indices = torch.where(matches)
# corresponding top-k weights
weights_topk = routing_weights_topk[token_indices, k_indices].unsqueeze(-1) # (num_matches, 1)
# Accumulate sparse_outputs only for matched tokens
sparse_outputs[token_indices] = sparse_outputs[token_indices] + expert_output[token_indices] * weights_topk
# Combine sparse forward output and dense backward output
final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
final_flat = final_flat.to(dtype=dtype)
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
return final_output, router_logits
# def forward(self, hidden_states: torch.Tensor):
# """
# Gate version of implementation of straight-through, π -> mask, dmask / dπ = 1
# """
# batch_size, seq_length, hidden_dim = hidden_states.shape
# dtype = hidden_states.dtype
# device = hidden_states.device
# flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
# N_tokens = flat_hidden.size(0)
# # 1) router & softmax
# router_logits = self.gate(flat_hidden).to(dtype=dtype) # (N, num_experts)
# routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (N, num_experts)
# # 2) top-K selection
# _, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) # (N, K), (N, K)
# # 3) build hard & ste masks
# mask_hard = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1).to(dtype) # (N, num_experts)
# #mask_ste = mask_hard + (routing_weights - routing_weights.detach())
# mask_ste = mask_hard + (router_logits - router_logits.detach())
# # 4) compute gated weights = π * mask, then optionally renormalize
# gated = routing_weights * mask_ste # zero-out non-TopK
# if self.norm_topk_prob:
# norm_ratio = gated.sum(dim=-1, keepdim=True) # (N,1)
# gated = gated / norm_ratio # normalized TopK
# # 5)prepare accumulators
# dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
# sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
# for expert_idx, expert_layer in enumerate(self.experts):
# expert_output = expert_layer(flat_hidden).to(dtype=dtype) # (N_tokens, hidden_dim)
# activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
# if expert_output.requires_grad:
# expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
# # a) Dense-STE backward uses gated weights
# weights = gated[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
# dense_outputs += expert_output * weights
# # b) Sparse forward -- find tokens where this expert is among top_k (active experts)
# active = (selected_experts == expert_idx)
# if active.any():
# token_indices, _ = torch.where(active)
# weights_topk = gated[token_indices, expert_idx].unsqueeze(-1) # (num_matches,1)
# sparse_outputs[token_indices] += expert_output[token_indices] * weights_topk
# # 6) STE mix: forward from sparse, backward from dense
# final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
# final_output = final_flat.view(batch_size, seq_length, hidden_dim).to(dtype=dtype)
# return final_output, router_logits
# def forward(self, hidden_states: torch.Tensor):
# batch_size, seq_length, hidden_dim = hidden_states.shape
# # 记录输入张量的数据类型,确保所有计算保持一致
# dtype = hidden_states.dtype
# device = hidden_states.device
# flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
# N_tokens = flat_hidden.size(0)
# # 计算路由逻辑
# router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
# # 确保router_logits和flat_hidden数据类型一致
# router_logits = router_logits.to(dtype=dtype)
# routing_weights = F.softmax(router_logits, dim=1, dtype=dtype) # (B*seq_len, num_experts)
# # 选择top-k专家
# routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# if self.norm_topk_prob:
# routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
# # 确保归一化后类型一致
# routing_weights_topk = routing_weights_topk.to(dtype=dtype)
# # ---------- 真实计算所有专家输出(密集计算)----------
# all_expert_outputs = torch.zeros((N_tokens, self.num_experts, hidden_dim),
# dtype=dtype, device=device)
# for expert_idx in range(self.num_experts):
# expert_layer = self.experts[expert_idx]
# # 对所有token都计算当前专家的输出
# expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
# # 计算当前expert的激活mask,只有激活token梯度被保留
# activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
# # 注册梯度hook,使得非激活token的梯度被置零
# if expert_output.requires_grad:
# expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
# # 确保专家输出与预期类型一致
# expert_output = expert_output.to(dtype=dtype)
# all_expert_outputs[:, expert_idx, :] = expert_output
# # ---------- 提取激活专家输出(稀疏前向)- 使用张量批处理 ----------
# # 创建索引张量,第一维是token索引,第二维是专家索引
# token_indices = torch.arange(N_tokens, device=device).unsqueeze(1).expand(-1, self.top_k)
# batch_indices = token_indices.reshape(-1)
# expert_indices = selected_experts.reshape(-1)
# # 批量提取激活专家的输出
# selected_outputs = all_expert_outputs[batch_indices, expert_indices].view(N_tokens, self.top_k, hidden_dim)
# # 扩展权重以便批量相乘
# expanded_weights = routing_weights_topk.unsqueeze(-1) # (N_tokens, top_k, 1)
# expanded_weights = expanded_weights.to(dtype=dtype)
# # 权重乘以专家输出并求和
# sparse_output = (selected_outputs * expanded_weights).sum(dim=1) # (N_tokens, hidden_dim)
# # ---------- 密集计算聚合(用于反向传播)----------
# # 使用所有专家的输出和路由权重计算密集输出
# routing_weights_expanded = routing_weights.unsqueeze(-1) # (N_tokens, num_experts, 1)
# routing_weights_expanded = routing_weights_expanded.to(dtype=dtype)
# dense_outputs = (all_expert_outputs * routing_weights_expanded).sum(dim=1) # (N_tokens, hidden_dim)
# # ---------- 组合稀疏前向和密集反向 ----------
# # sparse_output.detach()保留稀疏前向计算图
# # (dense_outputs - dense_outputs.detach())只保留密集反向梯度
# final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
# final_flat = final_flat.to(dtype=dtype) # 确保最终输出类型一致
# final_output = final_flat.view(batch_size, seq_length, hidden_dim)
# return final_output, router_logits
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
"""
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
以实现 dense backward 功能。
配置类:DenseBackwardOLMoEConfig
"""
config_class = DenseBackwardOLMoEConfig
base_model_prefix = "olmoe"
def __init__(self, config):
# 首先调用父类初始化方法
super().__init__(config)
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
# 复制预训练模型的状态到当前模型
self.config = pretrained_model.config
self.model = pretrained_model.model
self.vocab_size = pretrained_model.vocab_size
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
self.num_experts = pretrained_model.num_experts
self.lm_head = pretrained_model.lm_head
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
# 且每层中 mlp 模块包含属性 sparse_moe_block。
for layer in self.model.layers:
if hasattr(layer.mlp, "gate"):
print("111")
orig_block = layer.mlp
# 通过直接复制原版属性创建新的块
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
# 然后手动复制需要共享的属性:
new_block.gate = orig_block.gate
new_block.experts = orig_block.experts
new_block.num_experts = orig_block.num_experts
new_block.top_k = orig_block.top_k
new_block.norm_topk_prob = orig_block.norm_topk_prob
layer.mlp = new_block
print(type(layer.mlp))
# 释放预训练模型内存
del pretrained_model
import gc
gc.collect()
torch.cuda.empty_cache()
print("原始预训练模型已释放")
def main():
config = DenseBackwardOLMoEConfig( # 官方模型参数
model_marker="DenseBackward_olmoe_marker",
)
# 创建自定义模型实例
model = DenseBackwardOLMoEForCausalLM(config)
print(type(model))
print(type(model.model))
print(type(model.model.layers[0]))
print(type(model.model.layers[0].mlp))
print(type(model.model.layers[0].mlp.experts))
if __name__ == "__main__":
main()