MR-Eder's picture
Update README.md
13f71ff verified
|
raw
history blame
3.02 kB
metadata
library_name: transformers
language:
  - de
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
pipeline_tag: automatic-speech-recognition

GRAG-WHISPER-LARGE-v3-TURBO-HESSIAN-AI

This model is fine-tuned on a carefully curated 13 hour dataset.

Evaluations - Word error rate

Test-Dataset openai-whisper-large-v3-turbo GRAG-WHISPER-LARGE-v3-TURBO primeline-whisper-large-v3-turbo-german
Tuda-De 8.195 6.360 6.441
common_voice_19_0 3.839 3.249 3.217
multilingual librispeech 3.202 2.071 2.067
All 3.641 2.633 2.630

The data and code for evaluations are available here

Training data

The training data for this model includes conversations of spoken German with a mix of english business phrases included. The data was carefully selected and processed to optimize recognition performance. The dataset will not be published because of unclear situation if the data would be used for voice-cloning. The rights to use the collected data are only for the intended use to train speech-to-text models.

How to use

import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "avemio/GRAG-WHISPER-LARGE-v3-TURBO"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0