DynamicNoise-deberta-v3-small-Label_B-1024-epochs-4

This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1055
  • Accuracy: 0.9842
  • F1: 0.9842
  • Precision: 0.9844
  • Recall: 0.9842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.12 0.9997 1599 0.1176 0.9737 0.9738 0.9749 0.9737
0.0293 1.9995 3198 0.0862 0.9829 0.9829 0.9831 0.9829
0.0021 2.9994 4797 0.1027 0.9821 0.9821 0.9823 0.9821
0.0021 3.9992 6396 0.1055 0.9842 0.9842 0.9844 0.9842

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avinasht/DynamicNoise-deberta-v3-small-Label_B-1024-epochs-4

Finetuned
(136)
this model