avinasht's picture
End of training
4ea5525 verified
|
raw
history blame
1.7 kB
metadata
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Innovative-deberta-v3-xsmall-qwen-2-72B-768
    results: []

Innovative-deberta-v3-xsmall-qwen-2-72B-768

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0889
  • Accuracy: 0.9738
  • F1: 0.9746
  • Precision: 0.9770
  • Recall: 0.9738

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0324 0.9994 1279 0.0889 0.9738 0.9746 0.9770 0.9738

Framework versions

  • Transformers 4.42.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1