avinasht's picture
End of training
4ea5525 verified
---
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Innovative-deberta-v3-xsmall-qwen-2-72B-768
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Innovative-deberta-v3-xsmall-qwen-2-72B-768
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0889
- Accuracy: 0.9738
- F1: 0.9746
- Precision: 0.9770
- Recall: 0.9738
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0324 | 0.9994 | 1279 | 0.0889 | 0.9738 | 0.9746 | 0.9770 | 0.9738 |
### Framework versions
- Transformers 4.42.2
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1