Noisy-deberta-v3-xsmall-Label_B-768-epochs-5

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0850
  • Accuracy: 0.9839
  • F1: 0.9839
  • Precision: 0.9841
  • Recall: 0.9839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 48
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0801 0.9995 1066 0.1455 0.9542 0.9535 0.9565 0.9542
0.0581 1.9993 2132 0.0792 0.9805 0.9805 0.9807 0.9805
0.0543 2.9991 3198 0.3059 0.9434 0.9423 0.9495 0.9434
0.0003 3.9998 4265 0.0850 0.9839 0.9839 0.9841 0.9839
0.0006 4.9986 5330 0.1618 0.9737 0.9737 0.9747 0.9737

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
27
Safetensors
Model size
70.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avinasht/Noisy-deberta-v3-xsmall-Label_B-768-epochs-5

Finetuned
(44)
this model