|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: Noisy10per-deberta-v3-small-Label_B-768-epochs-9 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Noisy10per-deberta-v3-small-Label_B-768-epochs-9 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1297 |
|
- Accuracy: 0.9854 |
|
- F1: 0.9854 |
|
- Precision: 0.9856 |
|
- Recall: 0.9854 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 48 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 9 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.0764 | 0.9995 | 1066 | 0.1081 | 0.9730 | 0.9731 | 0.9733 | 0.9730 | |
|
| 0.083 | 1.9993 | 2132 | 0.1059 | 0.9763 | 0.9762 | 0.9770 | 0.9763 | |
|
| 0.0474 | 2.9991 | 3198 | 0.0775 | 0.9833 | 0.9833 | 0.9834 | 0.9833 | |
|
| 0.0028 | 3.9998 | 4265 | 0.1005 | 0.9818 | 0.9818 | 0.9821 | 0.9818 | |
|
| 0.0025 | 4.9995 | 5331 | 0.1092 | 0.9841 | 0.9842 | 0.9843 | 0.9841 | |
|
| 0.0287 | 5.9993 | 6397 | 0.1633 | 0.9820 | 0.9821 | 0.9827 | 0.9820 | |
|
| 0.0085 | 6.9991 | 7463 | 0.1640 | 0.9814 | 0.9814 | 0.9818 | 0.9814 | |
|
| 0.001 | 7.9998 | 8530 | 0.1297 | 0.9854 | 0.9854 | 0.9856 | 0.9854 | |
|
| 0.0 | 8.9977 | 9594 | 0.1368 | 0.9851 | 0.9852 | 0.9853 | 0.9851 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|