avinasht's picture
Update README.md
537d2cc verified
|
raw
history blame
1.8 kB
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: deberta-v3-xsmall-Label_B-1024-Epochs-2
    results: []

deberta-v3-xsmall-Label_B-1024-epoch-2

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0823
  • Accuracy: 0.9779
  • F1: 0.9780
  • Precision: 0.9786
  • Recall: 0.9779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1048 0.9994 1279 0.1988 0.9411 0.9408 0.9499 0.9411
0.0125 1.9988 2558 0.0823 0.9779 0.9780 0.9786 0.9779

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0