WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0934 | 0.4929 | 1000 | 0.0901 | 0.9815 | 0.0 | 0.0 | 0.0 |
0.0778 | 0.9857 | 2000 | 0.0700 | 0.9815 | 0.0 | 0.0 | 0.0 |
0.0618 | 1.4786 | 3000 | 0.0565 | 0.9829 | 0.1733 | 0.8388 | 0.0967 |
0.0535 | 1.9714 | 4000 | 0.0489 | 0.9844 | 0.3322 | 0.7953 | 0.2100 |
0.0473 | 2.4643 | 5000 | 0.0452 | 0.9857 | 0.4684 | 0.7474 | 0.3411 |
0.0436 | 2.9571 | 6000 | 0.0421 | 0.9862 | 0.4998 | 0.7577 | 0.3729 |
0.0389 | 3.4500 | 7000 | 0.0403 | 0.9866 | 0.5333 | 0.7517 | 0.4132 |
0.0376 | 3.9428 | 8000 | 0.0395 | 0.9867 | 0.5632 | 0.7194 | 0.4628 |
0.0339 | 4.4357 | 9000 | 0.0386 | 0.9869 | 0.5613 | 0.7431 | 0.4509 |
0.0337 | 4.9285 | 10000 | 0.0381 | 0.9873 | 0.5768 | 0.7512 | 0.4681 |
0.0295 | 5.4214 | 11000 | 0.0371 | 0.9872 | 0.6005 | 0.7141 | 0.5182 |
0.0305 | 5.9142 | 12000 | 0.0377 | 0.9874 | 0.5996 | 0.7307 | 0.5084 |
0.0254 | 6.4071 | 13000 | 0.0373 | 0.9875 | 0.6118 | 0.7224 | 0.5306 |
0.0273 | 6.9000 | 14000 | 0.0373 | 0.9876 | 0.6137 | 0.7237 | 0.5327 |
0.0228 | 7.3928 | 15000 | 0.0371 | 0.9878 | 0.6180 | 0.7331 | 0.5341 |
0.0235 | 7.8857 | 16000 | 0.0374 | 0.9874 | 0.6313 | 0.6913 | 0.5809 |
Base model
microsoft/deberta-v3-small