WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0935 | 0.4931 | 1000 | 0.0899 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0764 | 0.9862 | 2000 | 0.0701 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0621 | 1.4793 | 3000 | 0.0569 | 0.9820 | 0.0746 | 0.9191 | 0.0389 |
0.0542 | 1.9724 | 4000 | 0.0500 | 0.9840 | 0.2899 | 0.8341 | 0.1755 |
0.0468 | 2.4655 | 5000 | 0.0468 | 0.9852 | 0.4234 | 0.7741 | 0.2914 |
0.0441 | 2.9586 | 6000 | 0.0437 | 0.9861 | 0.4909 | 0.7705 | 0.3601 |
0.0395 | 3.4517 | 7000 | 0.0420 | 0.9860 | 0.5308 | 0.7110 | 0.4235 |
0.0384 | 3.9448 | 8000 | 0.0399 | 0.9867 | 0.5640 | 0.7255 | 0.4613 |
0.0343 | 4.4379 | 9000 | 0.0392 | 0.9868 | 0.5773 | 0.7176 | 0.4829 |
0.0337 | 4.9310 | 10000 | 0.0380 | 0.9873 | 0.5936 | 0.7367 | 0.4970 |
0.0305 | 5.4241 | 11000 | 0.0374 | 0.9875 | 0.5965 | 0.7448 | 0.4974 |
0.0295 | 5.9172 | 12000 | 0.0379 | 0.9874 | 0.6077 | 0.7252 | 0.5230 |
0.0271 | 6.4103 | 13000 | 0.0375 | 0.9876 | 0.6052 | 0.7476 | 0.5083 |
0.0257 | 6.9034 | 14000 | 0.0376 | 0.9877 | 0.6152 | 0.7354 | 0.5288 |
0.0234 | 7.3964 | 15000 | 0.0374 | 0.9877 | 0.6281 | 0.7177 | 0.5583 |
0.0241 | 7.8895 | 16000 | 0.0381 | 0.9877 | 0.6218 | 0.7302 | 0.5414 |
Base model
microsoft/deberta-v3-small