libCap_prBERTbfd_clf

This model is a fine-tuned version of Rostlab/prot_bert_bfd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5197
  • Accuracy: 0.7457
  • F1: 0.7940
  • Precision: 0.7567
  • Recall: 0.8352
  • Auroc: 0.7268

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Auroc
No log 0.98 34 0.6393 0.6396 0.7053 0.6782 0.7345 0.6197
No log 1.98 68 0.5713 0.6962 0.7499 0.7256 0.7759 0.6795
No log 2.98 102 0.5652 0.7126 0.7388 0.7918 0.6924 0.7168
No log 3.98 136 0.5360 0.7330 0.7896 0.7345 0.8536 0.7076
No log 4.98 170 0.5223 0.7423 0.7830 0.7740 0.7921 0.7318
No log 5.98 204 0.5180 0.7454 0.7882 0.7699 0.8075 0.7323
No log 6.98 238 0.5179 0.7440 0.7934 0.7537 0.8376 0.7243
No log 7.98 272 0.5197 0.7457 0.7940 0.7567 0.8352 0.7268

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.