layoutlm-funsd / README.md
awahiro's picture
End of training
b23c987 verified
|
raw
history blame
9.34 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0307
  • Answer: {'precision': 0.3855302279484638, 'recall': 0.48084054388133496, 'f1': 0.4279427942794279, 'number': 809}
  • Header: {'precision': 0.34782608695652173, 'recall': 0.2689075630252101, 'f1': 0.3033175355450237, 'number': 119}
  • Question: {'precision': 0.48268238761974946, 'recall': 0.6150234741784038, 'f1': 0.5408753096614369, 'number': 1065}
  • Overall Precision: 0.4378
  • Overall Recall: 0.5399
  • Overall F1: 0.4835
  • Overall Accuracy: 0.6393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7508 1.0 10 1.5163 {'precision': 0.07105263157894737, 'recall': 0.10012360939431397, 'f1': 0.08311954848640328, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2490566037735849, 'recall': 0.18591549295774648, 'f1': 0.2129032258064516, 'number': 1065} 0.1442 0.1400 0.1421 0.3638
1.4483 2.0 20 1.3842 {'precision': 0.19585898153329603, 'recall': 0.4326328800988875, 'f1': 0.2696456086286595, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.27010309278350514, 'recall': 0.36901408450704226, 'f1': 0.3119047619047619, 'number': 1065} 0.2286 0.3728 0.2834 0.4135
1.3068 3.0 30 1.2439 {'precision': 0.2390092879256966, 'recall': 0.47713226205191595, 'f1': 0.3184818481848185, 'number': 809} {'precision': 0.03125, 'recall': 0.01680672268907563, 'f1': 0.02185792349726776, 'number': 119} {'precision': 0.32887189292543023, 'recall': 0.48450704225352115, 'f1': 0.39179954441913445, 'number': 1065} 0.2783 0.4536 0.3450 0.4631
1.1868 4.0 40 1.1443 {'precision': 0.25613802256138024, 'recall': 0.47713226205191595, 'f1': 0.33333333333333337, 'number': 809} {'precision': 0.1797752808988764, 'recall': 0.13445378151260504, 'f1': 0.15384615384615385, 'number': 119} {'precision': 0.3619233268356075, 'recall': 0.5230046948356808, 'f1': 0.42780337941628266, 'number': 1065} 0.3059 0.4812 0.3740 0.5267
1.0837 5.0 50 1.1479 {'precision': 0.27571728481455565, 'recall': 0.48702101359703337, 'f1': 0.3521000893655049, 'number': 809} {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119} {'precision': 0.3705616526791478, 'recall': 0.5389671361502347, 'f1': 0.4391736801836266, 'number': 1065} 0.3234 0.4977 0.3921 0.5252
1.0102 6.0 60 1.1154 {'precision': 0.29912810194500333, 'recall': 0.5512978986402967, 'f1': 0.3878260869565217, 'number': 809} {'precision': 0.2604166666666667, 'recall': 0.21008403361344538, 'f1': 0.23255813953488375, 'number': 119} {'precision': 0.44872918492550395, 'recall': 0.4807511737089202, 'f1': 0.4641885766092475, 'number': 1065} 0.3603 0.4932 0.4164 0.5831
0.9349 7.0 70 1.0180 {'precision': 0.3333333333333333, 'recall': 0.4289245982694685, 'f1': 0.37513513513513513, 'number': 809} {'precision': 0.32558139534883723, 'recall': 0.23529411764705882, 'f1': 0.2731707317073171, 'number': 119} {'precision': 0.42487046632124353, 'recall': 0.615962441314554, 'f1': 0.5028746646224608, 'number': 1065} 0.3860 0.5173 0.4421 0.6121
0.8786 8.0 80 1.0198 {'precision': 0.3177723177723178, 'recall': 0.4796044499381953, 'f1': 0.3822660098522168, 'number': 809} {'precision': 0.2815533980582524, 'recall': 0.24369747899159663, 'f1': 0.26126126126126126, 'number': 119} {'precision': 0.4321808510638298, 'recall': 0.6103286384976526, 'f1': 0.5060334760607241, 'number': 1065} 0.3773 0.5354 0.4426 0.6088
0.8204 9.0 90 1.0123 {'precision': 0.3665987780040733, 'recall': 0.44499381953028433, 'f1': 0.40201005025125625, 'number': 809} {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} {'precision': 0.45675482487491065, 'recall': 0.6, 'f1': 0.5186688311688312, 'number': 1065} 0.4147 0.5148 0.4594 0.6320
0.8126 10.0 100 1.0461 {'precision': 0.37877312560856863, 'recall': 0.48084054388133496, 'f1': 0.42374727668845313, 'number': 809} {'precision': 0.3, 'recall': 0.226890756302521, 'f1': 0.25837320574162675, 'number': 119} {'precision': 0.4764521193092622, 'recall': 0.5699530516431925, 'f1': 0.5190252244548953, 'number': 1065} 0.4279 0.5133 0.4667 0.6288
0.7357 11.0 110 1.0160 {'precision': 0.3771839671120247, 'recall': 0.453646477132262, 'f1': 0.4118967452300786, 'number': 809} {'precision': 0.29357798165137616, 'recall': 0.2689075630252101, 'f1': 0.28070175438596495, 'number': 119} {'precision': 0.4672639558924879, 'recall': 0.6366197183098592, 'f1': 0.5389507154213037, 'number': 1065} 0.4252 0.5404 0.4759 0.6369
0.7249 12.0 120 1.0246 {'precision': 0.38046795523906407, 'recall': 0.4622991347342398, 'f1': 0.4174107142857143, 'number': 809} {'precision': 0.29411764705882354, 'recall': 0.25210084033613445, 'f1': 0.27149321266968324, 'number': 119} {'precision': 0.4727403156384505, 'recall': 0.6187793427230047, 'f1': 0.5359902399349329, 'number': 1065} 0.4288 0.5334 0.4754 0.6387
0.7015 13.0 130 1.0335 {'precision': 0.36654135338345867, 'recall': 0.4820766378244747, 'f1': 0.416444207154298, 'number': 809} {'precision': 0.31521739130434784, 'recall': 0.24369747899159663, 'f1': 0.27488151658767773, 'number': 119} {'precision': 0.4788104089219331, 'recall': 0.6046948356807512, 'f1': 0.5344398340248964, 'number': 1065} 0.4250 0.5334 0.4731 0.6326
0.6696 14.0 140 1.0364 {'precision': 0.3841121495327103, 'recall': 0.5080346106304079, 'f1': 0.43746673762639704, 'number': 809} {'precision': 0.32941176470588235, 'recall': 0.23529411764705882, 'f1': 0.2745098039215686, 'number': 119} {'precision': 0.48804934464148036, 'recall': 0.5943661971830986, 'f1': 0.5359864521591872, 'number': 1065} 0.4372 0.5379 0.4823 0.6394
0.6661 15.0 150 1.0307 {'precision': 0.3855302279484638, 'recall': 0.48084054388133496, 'f1': 0.4279427942794279, 'number': 809} {'precision': 0.34782608695652173, 'recall': 0.2689075630252101, 'f1': 0.3033175355450237, 'number': 119} {'precision': 0.48268238761974946, 'recall': 0.6150234741784038, 'f1': 0.5408753096614369, 'number': 1065} 0.4378 0.5399 0.4835 0.6393

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2