layoutlm-funsd / README.md
awahiro's picture
End of training
8fb8d46 verified
|
raw
history blame
9.32 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0339
  • Answer: {'precision': 0.4001766784452297, 'recall': 0.5599505562422744, 'f1': 0.46676970633693976, 'number': 809}
  • Header: {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119}
  • Question: {'precision': 0.5092221331194867, 'recall': 0.596244131455399, 'f1': 0.5493079584775085, 'number': 1065}
  • Overall Precision: 0.4522
  • Overall Recall: 0.5600
  • Overall F1: 0.5003
  • Overall Accuracy: 0.6347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.6941 1.0 10 1.4585 {'precision': 0.09797822706065319, 'recall': 0.1557478368355995, 'f1': 0.12028639618138426, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2629193109700816, 'recall': 0.27230046948356806, 'f1': 0.26752767527675275, 'number': 1065} 0.1741 0.2087 0.1899 0.3863
1.3912 2.0 20 1.3157 {'precision': 0.19625137816979052, 'recall': 0.4400494437577256, 'f1': 0.27144491040792984, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2574061882817643, 'recall': 0.3671361502347418, 'f1': 0.3026315789473684, 'number': 1065} 0.2231 0.3748 0.2797 0.4259
1.2646 3.0 30 1.1981 {'precision': 0.23537234042553193, 'recall': 0.43757725587144625, 'f1': 0.30609597924773024, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.35086633663366334, 'recall': 0.532394366197183, 'f1': 0.42297650130548303, 'number': 1065} 0.2908 0.4621 0.3570 0.4979
1.1512 4.0 40 1.0937 {'precision': 0.2754578754578755, 'recall': 0.4647713226205192, 'f1': 0.3459061637534499, 'number': 809} {'precision': 0.12048192771084337, 'recall': 0.08403361344537816, 'f1': 0.09900990099009901, 'number': 119} {'precision': 0.3988563259471051, 'recall': 0.523943661971831, 'f1': 0.45292207792207795, 'number': 1065} 0.3316 0.4737 0.3901 0.5719
1.052 5.0 50 1.0996 {'precision': 0.2841163310961969, 'recall': 0.47095179233621753, 'f1': 0.35441860465116287, 'number': 809} {'precision': 0.23529411764705882, 'recall': 0.13445378151260504, 'f1': 0.17112299465240638, 'number': 119} {'precision': 0.40622929092113985, 'recall': 0.5755868544600939, 'f1': 0.47630147630147635, 'number': 1065} 0.3461 0.5068 0.4113 0.5719
0.9901 6.0 60 1.0590 {'precision': 0.3064992614475628, 'recall': 0.5129789864029666, 'f1': 0.3837263060564031, 'number': 809} {'precision': 0.2345679012345679, 'recall': 0.15966386554621848, 'f1': 0.18999999999999997, 'number': 119} {'precision': 0.4610441767068273, 'recall': 0.5389671361502347, 'f1': 0.496969696969697, 'number': 1065} 0.3761 0.5058 0.4314 0.6011
0.9158 7.0 70 1.0134 {'precision': 0.3295238095238095, 'recall': 0.4276885043263288, 'f1': 0.3722431414739107, 'number': 809} {'precision': 0.26506024096385544, 'recall': 0.18487394957983194, 'f1': 0.21782178217821785, 'number': 119} {'precision': 0.45186226282501757, 'recall': 0.603755868544601, 'f1': 0.5168810289389068, 'number': 1065} 0.3955 0.5073 0.4445 0.6314
0.8626 8.0 80 1.0097 {'precision': 0.3275862068965517, 'recall': 0.46971569839307786, 'f1': 0.3859827323514474, 'number': 809} {'precision': 0.3157894736842105, 'recall': 0.20168067226890757, 'f1': 0.24615384615384614, 'number': 119} {'precision': 0.44047619047619047, 'recall': 0.6253521126760564, 'f1': 0.5168800931315483, 'number': 1065} 0.3894 0.5369 0.4514 0.6276
0.8026 9.0 90 1.0030 {'precision': 0.372310570626754, 'recall': 0.4919653893695921, 'f1': 0.42385516506922255, 'number': 809} {'precision': 0.2736842105263158, 'recall': 0.2184873949579832, 'f1': 0.2429906542056075, 'number': 119} {'precision': 0.49289454001495886, 'recall': 0.6187793427230047, 'f1': 0.5487094088259784, 'number': 1065} 0.4330 0.5434 0.4820 0.6410
0.794 10.0 100 1.0143 {'precision': 0.3772893772893773, 'recall': 0.5092707045735476, 'f1': 0.4334560757496055, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.20168067226890757, 'f1': 0.23645320197044337, 'number': 119} {'precision': 0.4923572003218021, 'recall': 0.5746478873239437, 'f1': 0.5303292894280762, 'number': 1065} 0.4332 0.5258 0.4751 0.6380
0.7156 11.0 110 1.0071 {'precision': 0.38151875571820676, 'recall': 0.515451174289246, 'f1': 0.43848580441640383, 'number': 809} {'precision': 0.2828282828282828, 'recall': 0.23529411764705882, 'f1': 0.25688073394495414, 'number': 119} {'precision': 0.5, 'recall': 0.6131455399061033, 'f1': 0.5508224377899621, 'number': 1065} 0.4396 0.5509 0.4890 0.6393
0.7015 12.0 120 1.0361 {'precision': 0.3828867761452031, 'recall': 0.5475896168108776, 'f1': 0.45066124109867756, 'number': 809} {'precision': 0.3111111111111111, 'recall': 0.23529411764705882, 'f1': 0.2679425837320574, 'number': 119} {'precision': 0.49387442572741197, 'recall': 0.6056338028169014, 'f1': 0.5440742302825812, 'number': 1065} 0.4371 0.5600 0.4910 0.6326
0.681 13.0 130 1.0591 {'precision': 0.38740293356341676, 'recall': 0.5550061804697157, 'f1': 0.4563008130081301, 'number': 809} {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} {'precision': 0.5167074164629177, 'recall': 0.5953051643192488, 'f1': 0.5532286212914486, 'number': 1065} 0.4503 0.5575 0.4982 0.6299
0.6461 14.0 140 1.0191 {'precision': 0.38854625550660793, 'recall': 0.5451174289245982, 'f1': 0.45370370370370366, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.23529411764705882, 'f1': 0.27586206896551724, 'number': 119} {'precision': 0.49961330239752516, 'recall': 0.6065727699530516, 'f1': 0.547921967769296, 'number': 1065} 0.4439 0.5595 0.4950 0.6351
0.6518 15.0 150 1.0339 {'precision': 0.4001766784452297, 'recall': 0.5599505562422744, 'f1': 0.46676970633693976, 'number': 809} {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119} {'precision': 0.5092221331194867, 'recall': 0.596244131455399, 'f1': 0.5493079584775085, 'number': 1065} 0.4522 0.5600 0.5003 0.6347

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2