wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4732
  • Wer: 0.3300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.2982 1.0 500 1.3852 0.9990
0.8067 2.01 1000 0.5318 0.5140
0.4393 3.01 1500 0.4500 0.4570
0.3007 4.02 2000 0.4259 0.4091
0.2306 5.02 2500 0.4092 0.3962
0.1845 6.02 3000 0.3949 0.3834
0.1516 7.03 3500 0.4144 0.3759
0.1347 8.03 4000 0.3958 0.3689
0.1217 9.04 4500 0.4455 0.3754
0.1039 10.04 5000 0.4228 0.3684
0.0921 11.04 5500 0.4310 0.3566
0.082 12.05 6000 0.4549 0.3617
0.078 13.05 6500 0.4535 0.3661
0.0668 14.06 7000 0.4726 0.3557
0.0648 15.06 7500 0.4414 0.3512
0.0581 16.06 8000 0.4781 0.3548
0.057 17.07 8500 0.4626 0.3588
0.0532 18.07 9000 0.5065 0.3495
0.0442 19.08 9500 0.4645 0.3390
0.0432 20.08 10000 0.4786 0.3466
0.0416 21.08 10500 0.4487 0.3425
0.0337 22.09 11000 0.4878 0.3416
0.0305 23.09 11500 0.4787 0.3413
0.0319 24.1 12000 0.4707 0.3395
0.0262 25.1 12500 0.4875 0.3345
0.0266 26.1 13000 0.4801 0.3343
0.025 27.11 13500 0.4926 0.3320
0.022 28.11 14000 0.4894 0.3313
0.0227 29.12 14500 0.4732 0.3300

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
13
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support