bert

Upload folder using huggingface_hub

#2
Files changed (1) hide show
  1. README.md +3 -46
README.md CHANGED
@@ -1,46 +1,3 @@
1
- ---
2
- license: apache-2.0
3
- base_model:
4
- - Snowflake/snowflake-arctic-embed-l
5
- ---
6
-
7
- ***This model is a neuron compiled version of https://huggingface.co/Snowflake/snowflake-arctic-embed-l ***
8
-
9
- It was compiled on version 2.20 of the Neuron SDK. You may need to run the compilation process again.
10
-
11
- See https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers for more details
12
-
13
- For information on how to run on SageMaker: https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers
14
-
15
- To run:
16
- ```
17
-
18
- from optimum.neuron import NeuronModelForSentenceTransformers
19
- from transformers import AutoTokenizer
20
- model_id = "jburtoft/snowflake-arctic-embed-l"
21
-
22
- # Use the line below if you have to compile the model yourself
23
- #model_id = "snowflake-arctic-embed-l-inf2"
24
-
25
-
26
- model = NeuronModelForSentenceTransformers.from_pretrained(model_id)
27
- tokenizer = AutoTokenizer.from_pretrained(model_id)
28
-
29
- # Run inference
30
- prompt = "I like to eat apples"
31
- encoded_input = tokenizer(prompt, return_tensors='pt')
32
- outputs = model(**encoded_input)
33
-
34
- token_embeddings = outputs.token_embeddings
35
- sentence_embedding = outputs.sentence_embedding:
36
-
37
- print(f"token embeddings: {token_embeddings.shape}") # torch.Size([1, 7, 1024])
38
- print(f"sentence_embedding: {sentence_embedding.shape}") # torch.Size([1, 1024])
39
-
40
- ```
41
-
42
- To compile :
43
- ```
44
- optimum-cli export neuron -m Snowflake/snowflake-arctic-embed-l --sequence_length 512 --batch_size 1 --task feature-extraction snowflake-arctic-embed-l-inf2
45
- ```
46
-
 
1
+ ---
2
+ license: apache-2.0
3
+ ---