Model Card for mistralai/Mistral-7B-v0.1

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the ['HuggingFaceH4/ultrafeedback_binarized'] dataset. It has been trained using TRL.

Quick start

from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="awsuineg/zephyr-orpo-7b-hehe", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])

Training procedure

This model was trained with ORPO, a method introduced in ORPO: Monolithic Preference Optimization without Reference Model.

Framework versions

  • TRL: 0.12.1
  • Transformers: 4.46.2
  • Pytorch: 2.5.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citations

Cite ORPO as:

@article{hong2024orpo,
    title        = {{ORPO: Monolithic Preference Optimization without Reference Model}},
    author       = {Jiwoo Hong and Noah Lee and James Thorne},
    year         = 2024,
    eprint       = {arXiv:2403.07691}
}

Cite TRL as:

@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for awsuineg/zephyr-orpo-7b-hehe

Quantized
(170)
this model

Dataset used to train awsuineg/zephyr-orpo-7b-hehe