axljeremy7's picture
Model save
5787b78
|
raw
history blame
2.54 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-finetuned-CLS-RTE
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: rte
          split: validation
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6967509025270758

bert-base-uncased-finetuned-CLS-RTE

This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2843
  • Accuracy: 0.6968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 156 0.6285 0.6390
No log 2.0 312 0.6483 0.6679
No log 3.0 468 0.8430 0.7004
0.4504 4.0 624 1.2886 0.6606
0.4504 5.0 780 1.6445 0.7004
0.4504 6.0 936 1.8099 0.6751
0.0631 7.0 1092 1.8173 0.7040
0.0631 8.0 1248 1.9799 0.7004
0.0631 9.0 1404 1.9767 0.6968
0.0159 10.0 1560 2.1696 0.6715
0.0159 11.0 1716 2.2142 0.6859
0.0159 12.0 1872 2.2605 0.6823
0.0076 13.0 2028 2.2775 0.7040
0.0076 14.0 2184 2.2719 0.6968
0.0076 15.0 2340 2.2843 0.6968

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.2
  • Datasets 2.15.0
  • Tokenizers 0.15.0