|
--- |
|
library_name: transformers |
|
license: llama3.2 |
|
base_model: meta-llama/Llama-3.2-1B |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- winglian/evolkit-logprobs-pipeline-75k-v2 |
|
model-index: |
|
- name: outputs/out-1b-kd-more-saves |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
base_model: meta-llama/Llama-3.2-1B |
|
tokenizer_config: meta-llama/Llama-3.2-3B |
|
# Automatically upload checkpoint and final model to HF |
|
#hub_model_id: axolotl-ai-co/numina-3b-v4-zscore-ep3-lr3e-5-0_5-0_5 |
|
|
|
plugins: |
|
- axolotl.integrations.kd.KDPlugin |
|
- axolotl.integrations.liger.LigerPlugin |
|
|
|
liger_rms_norm: true |
|
liger_glu_activation: true |
|
|
|
torch_compile: true |
|
|
|
strict: false |
|
|
|
chat_template: llama3 |
|
|
|
kd_trainer: true |
|
kd_ce_alpha: 0.1 |
|
kd_alpha: 0.9 |
|
kd_temperature: 1.0 |
|
# kd_zscore_base_temp: 1.0 |
|
|
|
dataloader_prefetch_factor: 256 |
|
dataloader_num_workers: 4 |
|
dataloader_pin_memory: true |
|
|
|
gc_steps: -1 # gc at the end of each epoch |
|
|
|
datasets: |
|
- field_messages: messages_combined |
|
message_field_content: content |
|
message_field_role: role |
|
logprobs_field: llm_text_generation_vllm_logprobs |
|
path: winglian/evolkit-logprobs-pipeline-75k-v2 |
|
type: axolotl.integrations.kd.chat_template |
|
split: train |
|
temperature: 1.0 |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.0 |
|
output_dir: ./outputs/out-1b-kd-more-saves |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: lobprob-kd-evolkit |
|
wandb_entity: axolotl-ai |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 4 |
|
num_epochs: 3 |
|
optimizer: adamw_torch_fused |
|
lr_scheduler: cosine |
|
learning_rate: 3e-5 |
|
save_safetensors: true |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 100 |
|
evals_per_epoch: 2 |
|
eval_table_size: |
|
saves_per_epoch: 20 |
|
debug: |
|
# deepspeed: deepspeed_configs/zero1.json |
|
weight_decay: 0.0 |
|
special_tokens: |
|
pad_token: <|finetune_right_pad_id|> |
|
eos_token: <|eot_id|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out-1b-kd-more-saves |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the winglian/evolkit-logprobs-pipeline-75k-v2 dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|