asr-afmaay-wav2vec2 / README.md
ayaazlion's picture
Update README.md
6c5b702 verified
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: asr-afmaay-wav2vec2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# asr-afmaay-wav2vec2
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
<!-- - Loss: inf -->
- Wer: 0.5950
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 56
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.6522 | 3.65 | 400 | inf | 0.9355 |
| 1.0451 | 7.31 | 800 | inf | 0.7379 |
| 0.7211 | 10.96 | 1200 | inf | 0.7056 |
| 0.5122 | 14.61 | 1600 | inf | 0.6823 |
| 0.3891 | 18.26 | 2000 | inf | 0.6832 |
| 0.2934 | 21.92 | 2400 | inf | 0.6586 |
| 0.2379 | 25.57 | 2800 | inf | 0.6384 |
| 0.1926 | 29.22 | 3200 | inf | 0.6492 |
| 0.1592 | 32.88 | 3600 | inf | 0.6353 |
| 0.1328 | 36.53 | 4000 | inf | 0.6411 |
| 0.1106 | 40.18 | 4400 | inf | 0.6169 |
| 0.0851 | 43.84 | 4800 | inf | 0.6102 |
| 0.0702 | 47.49 | 5200 | inf | 0.6098 |
| 0.0609 | 51.14 | 5600 | inf | 0.6022 |
| 0.0501 | 54.79 | 6000 | inf | 0.5950 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.13.3